A 3D-2D dimension reduction for -Δ1 is obtained. A power law approximation from -Δp as p → 1 in terms of Γ-convergence, duality and asymptotics for least gradient functions has also been provided.
Mots-clés : 1-Laplacian, Γ-convergence, least gradient functions, dimension reduction, duality
@article{COCV_2014__20_1_42_0, author = {Amendola, Maria Emilia and Gargiulo, Giuliano and Zappale, Elvira}, title = {Dimension reduction for $-\Delta _1$}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {42--77}, publisher = {EDP-Sciences}, volume = {20}, number = {1}, year = {2014}, doi = {10.1051/cocv/2013053}, zbl = {1288.35266}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2013053/} }
TY - JOUR AU - Amendola, Maria Emilia AU - Gargiulo, Giuliano AU - Zappale, Elvira TI - Dimension reduction for $-\Delta _1$ JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 42 EP - 77 VL - 20 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2013053/ DO - 10.1051/cocv/2013053 LA - en ID - COCV_2014__20_1_42_0 ER -
%0 Journal Article %A Amendola, Maria Emilia %A Gargiulo, Giuliano %A Zappale, Elvira %T Dimension reduction for $-\Delta _1$ %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 42-77 %V 20 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2013053/ %R 10.1051/cocv/2013053 %G en %F COCV_2014__20_1_42_0
Amendola, Maria Emilia; Gargiulo, Giuliano; Zappale, Elvira. Dimension reduction for $-\Delta _1$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 42-77. doi : 10.1051/cocv/2013053. http://www.numdam.org/articles/10.1051/cocv/2013053/
[1] A variational definition of the strain energy for an elastic string. J. Elast. 25 (1991) 137-148. | MR | Zbl
, and ,[2] On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal. 109 (1992) 76-97. | MR | Zbl
and ,[3] Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford: Clarendon Press (2000). | MR | Zbl
, and ,[4] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[5] Pairing between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983) 293-318. | MR | Zbl
,[6] Brittle thin films. Appl. Math. Optim. 44 (2001) 299-323. | MR | Zbl
and ,[7] Dimensional reduction for energies with linear growth involving the bending moment. J. Math. Pures Appl. 90 (2008) 520-549. | MR | Zbl
, and ,[8] Γ-convergence of power-law functionals, variational principles in L∞, and applications. SIAM J. Math. Anal. 39 (2008) 1550-1576. | MR | Zbl
and ,[9] Analisi Funzionale. Liguori, Napoli (1986).
,[10] An introduction to Γ-convergence. Progress Nonlinear Differ. Equ. Appl. Birkhäuser Boston, Inc., Boston, MA (1983). | Zbl
,[11] On the relaxation of some classes of Dirichlet minimum problems. Commun. Partial Differ. Eqs. 24 (1999) 975-1006. | MR | Zbl
and ,[12] Une notion generale de convergence faible pour des fonctions croissantes d'ensemble. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977) 61-99. | Numdam | MR | Zbl
, ,[13] On Some Nonlinear Partial Differential Equations involving the 1-Laplacian and Critical Sobolev Exponent. ESAIM: COCV 4 (1999) 667-686. | Numdam | MR | Zbl
,[14] Théorèmes d'existence pour des equations avec l'opérateur 1-Laplacien, première valeur propre pour − Δ1. (French) [Some existence results for partial differential equations involving the 1-Laplacian: first eigenvalue for − Δ1]. C. R. Math. Acad. Sci. Paris 334 (2002) 1071-1076. | MR | Zbl
,[15] Functions locally almost 1-harmonic. Appl. Anal. 83 (2004) 865-896. | MR | Zbl
,[16] On some nonlinear equation involving the 1-Laplacian and trace map inequalities. Nonlinear Anal. 47 (2002) 1151-1163. | MR | Zbl
,[17] Convex analysis and variational problems. North-Holland, Amsterdam (1976). | MR | Zbl
and ,[18] Relaxation of quasiconvex functionals in BV(Ω,RN) for integrands f(x,u,∇u). Arch. Ration. Mech. Anal. 123 (1993) 1-49. | MR | Zbl
and ,[19] Functionals with linear growth in the Calculus of Variations. Comment. Math. Univ. Carolin. 20 (1979) 143-156. | MR | Zbl
, and ,[20] Sublinear functions of Measures and Variational Integrals. Duke Math. J. 31 (1964) 159-178. | MR | Zbl
and ,[21] Minimal surfaces and functions of bounded variation. Birkhauser (1977). | MR | Zbl
,[22] Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford, New York, Tokyo, Clarendon Press (1993). | MR | Zbl
, and ,[23] P. Juutinen, p-harmonic approximation of functions of least gradient. Indiana Univ. Math. J. 54 (2005) 1015-1029. | MR | Zbl
[24] Variations on the p-Laplacian, in edited by D. Bonheure, P. Takac. Nonlinear Elliptic Partial Differ. Equ. Contemporary Math. 540 (2011) 35-46. | MR
,[25] Dual spaces of Stresses and Strains, with Applications to Hencky Plasticity. Appl. Math. Optim. 10 (1983) 1-35. | MR | Zbl
and ,[26] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. | MR | Zbl
, and ,[27] On the Equation div( | ∇u | p − 2∇u) + λ | u | p − 2u = 0. Proc. Amer. Math. Soc. 109 (1990) 157-164. | MR | Zbl
,[28] On the relaxation and homogenization of some classes of variational problems with mixed boundary conditions. Rev. Roum. Math. Pures Appl. 51 (2006) 345-363. | MR | Zbl
and ,[29] Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430 (1992) 3560. | MR | Zbl
, and ,[30] The Dirichlet problem for functions of least gradient. In Degenerate diffusions (Minneapolis, MN, 1991). In vol. 47 of IMA Vol. Math. Appl. Springer, New York (1993) 197-214. | MR | Zbl
and ,[31] On the homogenization of Dirichlet Minimum Problems. Ricerche di Matematica LI (2002) 61-92. | MR | Zbl
,[32] Weakly differentiable functions. In vol. 120 of Graduate Texts in Math. Springer, Berlin (1989). | MR | Zbl
,Cité par Sources :