We first prove existence and uniqueness of optimal transportation maps for the Monge's problem associated to a cost function with a strictly convex constraint in the Euclidean plane ℝ2. The cost function coincides with the Euclidean distance if the displacement y - x belongs to a given strictly convex set, and it is infinite otherwise. Secondly, we give a sufficient condition for existence and uniqueness of optimal transportation maps for the original Monge's problem in ℝ2. Finally, we get existence of optimal transportation maps for a cost function with a convex constraint, i.e. y - x belongs to a given convex set with at most countable flat parts.
Mots-clés : optimal transportation map, convex constraint, Monge transportation problem
@article{COCV_2013__19_4_1064_0, author = {Chen, Ping and Jiang, Feida and Yang, Xiaoping}, title = {Two dimensional optimal transportation problem for a distance cost with a convex constraint}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1064--1075}, publisher = {EDP-Sciences}, volume = {19}, number = {4}, year = {2013}, doi = {10.1051/cocv/2013045}, mrnumber = {3182681}, zbl = {1282.49036}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2013045/} }
TY - JOUR AU - Chen, Ping AU - Jiang, Feida AU - Yang, Xiaoping TI - Two dimensional optimal transportation problem for a distance cost with a convex constraint JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 1064 EP - 1075 VL - 19 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2013045/ DO - 10.1051/cocv/2013045 LA - en ID - COCV_2013__19_4_1064_0 ER -
%0 Journal Article %A Chen, Ping %A Jiang, Feida %A Yang, Xiaoping %T Two dimensional optimal transportation problem for a distance cost with a convex constraint %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 1064-1075 %V 19 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2013045/ %R 10.1051/cocv/2013045 %G en %F COCV_2013__19_4_1064_0
Chen, Ping; Jiang, Feida; Yang, Xiaoping. Two dimensional optimal transportation problem for a distance cost with a convex constraint. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1064-1075. doi : 10.1051/cocv/2013045. http://www.numdam.org/articles/10.1051/cocv/2013045/
[1] Lectures notes on optimal transport problems. In Mathematical aspects of evolving interfaces, CIME summer school in Madeira (Pt), vol. 1812, edited by P. Colli and J. Rodrigues, Springer (2003) 1-52. | MR
,[2] Optimal mass transportation in the Heisenberg group. J. Funct. Anal. 208 (2004) 261-301. | MR
and ,[3] The monge problem in geodesic spaces. IMA Vol. Math. Appl. 153 (2011) 217-233. | MR
and ,[4] Constructing optimal maps for Morge's transport problem as a limit of strictly convex costs. J. Amer. Math. Soc. 15 (2001) 1-26. | MR
, and ,[5] A strategy for non-strictly convex transport cost and the example of || x − y || p in R2. Commun. Math. Sci. 8 (2010), 931-941. | MR
, and ,[6] The monge problem for strictly convex norms in Rd. J. Eur. Math. Soc. 12 (2010) 1355-1369. | MR
and ,[7] The monge problem in Rd. Duke Math. J. 157 (2011) 551-572. | MR
and ,[8] The ∞ − Wasserstein distance: local solutions and existence of optimal transport maps. SIAM J. Math. Anal. 40 (2008) 1-20. | MR
, and ,[9] Optimal transportation in Rn for a distance cost with convex constraints. To appear.
, and ,[10] Monge's transport problem in the Heisenberg group. Adv. Calc. Var. 4 (2010) 195-227. | MR
and ,[11] Differantial equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999) 1-66. | MR
and ,[12] Optimal transportation for a quadratic cost with convex constrains and applications. J. Math. Pures Appl. 98 (2012) 103-113. | MR
and ,[13] On the translocation of masses. Dokl. Akad. Nauk. USSR 37 (1942) 199-201. | MR
,[14] On a problem of Monge (in Russian). Uspekhi Mat. Nauk. 3 (1948) 225-226.
,[15] Five lectures on optimal transportation: geometry, regularity and applications. To appear in Proc. of the Séminaire de Mathématiques Supérieure (SMS) held in Montréal, QC, June 27-July 8, 2011. | MR
, ,[16] Mémoire sur la théorie des déblais et des Remblais. Histoire de l'Académie Royal des Sciences de Paris (1781) 666-704.
,[17] Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. Math. 141 (1979) 1-178. | MR
,[18] On the Monge mass transfer problem. Calc. Var. Partial Differ. Equ. 13 (2001) 19-31. | MR
and ,[19] Topics in optimal transportation. Graduate Studies in Mathematics, J. Amer. Math. Soc. Providence, RI 58 (2003). | MR
,[20] Optimal transport, old and new. Springer Verlag (2008). | MR
,Cité par Sources :