On shape optimization problems involving the fractional laplacian
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 976-1013.

Our concern is the computation of optimal shapes in problems involving (-Δ)1/2. We focus on the energy J(Ω) associated to the solution uΩ of the basic Dirichlet problem ( - Δ)1/2uΩ = 1 in Ω, u = 0 in Ωc. We show that regular minimizers Ω of this energy under a volume constraint are disks. Our proof goes through the explicit computation of the shape derivative (that seems to be completely new in the fractional context), and a refined adaptation of the moving plane method.

DOI : 10.1051/cocv/2012041
Classification : 35J05, 35Q35
Mots clés : fractional laplacian, fhape optimization, shape derivative, moving plane method
@article{COCV_2013__19_4_976_0,
     author = {Dalibard, Anne-Laure and G\'erard-Varet, David},
     title = {On shape optimization problems involving the fractional laplacian},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {976--1013},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {4},
     year = {2013},
     doi = {10.1051/cocv/2012041},
     mrnumber = {3182677},
     zbl = {1283.49049},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2012041/}
}
TY  - JOUR
AU  - Dalibard, Anne-Laure
AU  - Gérard-Varet, David
TI  - On shape optimization problems involving the fractional laplacian
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 976
EP  - 1013
VL  - 19
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2012041/
DO  - 10.1051/cocv/2012041
LA  - en
ID  - COCV_2013__19_4_976_0
ER  - 
%0 Journal Article
%A Dalibard, Anne-Laure
%A Gérard-Varet, David
%T On shape optimization problems involving the fractional laplacian
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 976-1013
%V 19
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2012041/
%R 10.1051/cocv/2012041
%G en
%F COCV_2013__19_4_976_0
Dalibard, Anne-Laure; Gérard-Varet, David. On shape optimization problems involving the fractional laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 976-1013. doi : 10.1051/cocv/2012041. http://www.numdam.org/articles/10.1051/cocv/2012041/

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math. 12 623-727. | MR | Zbl

[2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17 (1964) 35-92. | MR | Zbl

[3] M. Birkner, J. Alfredo López-Mimbela, and A. Wakolbinger, Comparison results and steady states for the Fujita equation with fractional Laplacian. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 (2005) 83-97. | Numdam | MR | Zbl

[4] K. Bogdan, The boundary Harnack principle for the fractional Laplacian. Studia Math. 123 (1997) 43-80. | MR | Zbl

[5] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224 (2010) 2052-2093. | MR | Zbl

[6] L.A. Caffarelli, J.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. (JEMS) 12 (2010) 1151-1179. | MR | Zbl

[7] M. Costabel, M. Dauge and R. Duduchava, Asymptotics without logarithmic terms for crack problems. Commun. Partial Diff. Eq. 28 (2003) 869-926. | MR | Zbl

[8] M. Dauge, Elliptic Boundary Value Problems on Corner Domains, in Lect. Notes Math., vol. 1341, Smoothness and asymptotics of solutions. Springer-Verlag, Berlin (1988). | MR | Zbl

[9] D. Desilva and J.-M. Roquejoffre, Regularity in a one-phase free boundary problem for the fractional laplacian. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, à paraître (2011). | Numdam | Zbl

[10] A. Henrot and M. Pierre, Variation et optimisation de formes. Math. Appl., vol. 48, Une analyse géométrique. Springer, Berlin (2005). | MR | Zbl

[11] E. Lauga, M.P. Brenner and H.A. Stone, Microfluidics: The no-slip boundary condition (2007).

[12] O. Lopes and M. Mariş, Symmetry of minimizers for some nonlocal variational problems. J. Funct. Anal. 254 (2008) 535-592. | MR | Zbl

[13] G. Lu and J. Zu, An overdetermined problem in riesz potential and fractional laplacian, Preprint Arxiv: 1101.1649v2 (2011). | Zbl

[14] J. Serrin, A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971) 304-318. | MR | Zbl

[15] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007) 67-112. | MR | Zbl

[16] O. Vinogradova and G. Yakubov, Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (1986) 479-487.

Cité par Sources :