We prove pointwise gradient bounds for entire solutions of pde's of the form ℒu(x) = ψ(x, u(x), ∇u(x)), where ℒ is an elliptic operator (possibly singular or degenerate). Thus, we obtain some Liouville type rigidity results. Some classical results of J. Serrin are also recovered as particular cases of our approach.
Mots-clés : gradient bounds, P-function estimates, rigidity results
@article{COCV_2013__19_2_616_0, author = {Farina, Alberto and Valdinoci, Enrico}, title = {Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde's}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {616--627}, publisher = {EDP-Sciences}, volume = {19}, number = {2}, year = {2013}, doi = {10.1051/cocv/2012024}, mrnumber = {3049726}, zbl = {1273.35126}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2012024/} }
TY - JOUR AU - Farina, Alberto AU - Valdinoci, Enrico TI - Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde's JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 616 EP - 627 VL - 19 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2012024/ DO - 10.1051/cocv/2012024 LA - en ID - COCV_2013__19_2_616_0 ER -
%0 Journal Article %A Farina, Alberto %A Valdinoci, Enrico %T Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde's %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 616-627 %V 19 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2012024/ %R 10.1051/cocv/2012024 %G en %F COCV_2013__19_2_616_0
Farina, Alberto; Valdinoci, Enrico. Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde's. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 616-627. doi : 10.1051/cocv/2012024. http://www.numdam.org/articles/10.1051/cocv/2012024/
[1] Über ein geometrisches theorem und seine anwendung auf die partiellen differentialgleichungen vom elliptischen Typus. Math. Z. 26 (1927) 551-558. | JFM | MR
,[2] A gradient bound for entire solutions of quasi-linear equations and its consequences. Commun. Pure Appl. Math. 47 (1994) 1457-1473. | MR | Zbl
, and ,[3] A pointwise gradient estimate for solutions of singular and degenerate PDEs in possibly unbounded domains with nonnegative mean curvature. Commun. Pure Appl. Anal. 11 (2012) 1983-2003. | MR | Zbl
, and ,[4] Superlinear systems of second-order ODE's. Nonlinear Anal. 68 (2008) 1765-1773. | MR | Zbl
and ,[5] Quasilinear equations with dependence on the gradient. Nonlinear Anal. 71 (2009) 4862-4868. | MR | Zbl
, and ,[6] C1 + α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983) 827-850. | MR | Zbl
,[7] Liouville-type theorems for elliptic problems, in Handbook of differential equations: stationary partial differential equations, Elsevier/North-Holland, Amsterdam. Handb. Differ. Equ. 4 (2007) 61-116. | MR | Zbl
,[8] Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch. Ration. Mech. Anal. 195 (2010) 1025-1058. | MR | Zbl
and ,[9] A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature. Adv. Math. 225 (2010) 2808-2827. | MR | Zbl
and ,[10] A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete Contin. Dyn. Syst. 30 (2011) 1139-1144. | MR | Zbl
and ,[11] Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | MR | Zbl
and ,[12] Ordinary differential equations, Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA. Classics Appl. Math. 38 (2002). Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA, MR0658490 (83e:34002)]. With a foreword by Peter Bates. | MR | Zbl
,[13] A gradient bound and a Liouville theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38 (1985) 679-684. | MR | Zbl
,[14] Some remarks on maximum principles. J. Anal. Math. 30 (1976) 421-433. | MR | Zbl
,[15] Entire solutions of nonlinear Poisson equations. Proc. London Math. Soc. 24 (1972) 348-366. | MR | Zbl
,[16] Maximum principles and their applications, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York. Math. Sci. Eng. 157 (1981). | MR | Zbl
,[17] Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51 (1984) 126-150. | MR | Zbl
,Cité par Sources :