A lower semicontinuity result in BV is obtained for quasiconvex integrals with subquadratic growth. The key steps in this proof involve obtaining boundedness properties for an extension operator, and a precise blow-up technique that uses fine properties of Sobolev maps. A similar result is obtained by Kristensen in [Calc. Var. Partial Differ. Equ. 7 (1998) 249-261], where there are weaker asssumptions on convergence but the integral needs to satisfy a stronger growth condition.
Mots-clés : lower semicontinuity, quasiconvex integrals, functions of bounded variation
@article{COCV_2013__19_2_555_0, author = {Soneji, Parth}, title = {Lower semicontinuity in {BV} of quasiconvex integrals with subquadratic growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {555--573}, publisher = {EDP-Sciences}, volume = {19}, number = {2}, year = {2013}, doi = {10.1051/cocv/2012021}, mrnumber = {3049723}, zbl = {1263.49012}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2012021/} }
TY - JOUR AU - Soneji, Parth TI - Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 555 EP - 573 VL - 19 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2012021/ DO - 10.1051/cocv/2012021 LA - en ID - COCV_2013__19_2_555_0 ER -
%0 Journal Article %A Soneji, Parth %T Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 555-573 %V 19 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2012021/ %R 10.1051/cocv/2012021 %G en %F COCV_2013__19_2_555_0
Soneji, Parth. Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 555-573. doi : 10.1051/cocv/2012021. http://www.numdam.org/articles/10.1051/cocv/2012021/
[1] New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ. 2 (1994) 329-371. | MR | Zbl
and ,[2] On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal. 109 (1992) 76-97. | MR | Zbl
and ,[3] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). | MR | Zbl
, , and ,[4] W1, p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | MR | Zbl
and ,[5] The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. of R. Soc. Edinburgh Sect. A 128 (1998) 463-479. | MR | Zbl
, and ,[6] Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Ric. Mat. 39 (1990) 99-129. | MR | Zbl
and ,[7] Lower semicontinuity in a borderline case. Preprint (2008).
, and ,[8] Relaxation of an area-like functional for the function | MR | Zbl
,[9] Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989). | MR | Zbl
,[10] Manifold constrained variational problems. Calc. Var. Partial Differ. Equ. 9 (1999) 185-206. | MR | Zbl
, , and ,[11] Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 (1997) 309-338. | Numdam | MR | Zbl
and ,[12] From Jacobian to Hessian: distributional form and relaxation. Riv. Mat. Univ. Parma 4 (2005) 45-74. | MR | Zbl
and ,[13] Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal. 7 (1997) 57-81. | MR | Zbl
and ,[14] Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081-1098. | MR | Zbl
and ,[15] Relaxation of quasiconvex functionals in BV(Ω, Rp) for integrands f(x, u, ∇u). Arch. Ration. Mech. Anal. 123 (1993) 1-49. | MR | Zbl
and ,[16] I. Fonseca, G. Leoni and S. Müller, 𝒜 quasiconvexity: weak-star convergence and the gap. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21 (2004) 209-236. | Numdam | Zbl
[17] Limits of the improved integrability of the volume forms. Indiana Univ. Math. J. 44 (1995) 305-339. | MR | Zbl
, and ,[18] Geometric function theory and non-linear analysis. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2001). | MR | Zbl
and ,[19] Lower semicontinuity of quasi-convex integrals in BV(Ω;Rm). Calc. Var. Partial Differ. Equ. 7 (1998) 249-261. | MR | Zbl
,[20] Weak lower semicontinuity of polyconvex integrals. Proc. of R. Soc. Edinburgh Sect. A 123 (1993) 681-691. | MR | Zbl
,[21] Weak lower semicontinuity of polyconvex and quasiconvex integrals. Preprint (1993). | MR
,[22] Lower semicontinuity of quasiconvex integrals. Manusc. Math. 85 (1994) 419-428. | MR | Zbl
,[23] On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 391-409. | Numdam | MR | Zbl
,[24] Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965) 125-149. | MR | Zbl
,[25] On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J. 41 (1992) 295-301. | MR | Zbl
,[26] Lower semicontinuity and Young measures in BV without Alberti's rank-one theorem. Adv. Calc. Var. 5 (2012) 127-159. | MR | Zbl
,[27] Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York (1987). | MR | Zbl
,[28] A new definition of the integral for nonparametric problems in the calculus of variations. Acta Math. 102 (1959) 23-32. | MR | Zbl
,[29] On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. | MR | Zbl
,[30] Quasiconvex functions with subquadratic growth. Proc. of R. Soc. London A 433 (1991) 723-725. | MR | Zbl
,[31] A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992) 313-326. | Numdam | MR | Zbl
,[32] Weakly differentiable functions, Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics 120 (1989). | MR | Zbl
,Cité par Sources :