We apply four different methods to study an intrinsically bang-bang optimal control problem. We study first a relaxed problem that we solve with a naive nonlinear programming approach. Since these preliminary results reveal singular arcs, we then use Pontryagin's Minimum Principle and apply multiple indirect shooting methods combined with homotopy approach to obtain an accurate solution of the relaxed problem. Finally, in order to recover a purely bang-bang solution for the original problem, we use once again a nonlinear programming approach.
Mots-clés : optimal control, singular arcs, nonlinear programming, continuation method, indirect multiple shooting
@article{COCV_2013__19_2_516_0, author = {Jan, Sophie}, title = {Minimizing the fuel consumption of a vehicle from the {Shell} {Eco-marathon:} a numerical study}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {516--532}, publisher = {EDP-Sciences}, volume = {19}, number = {2}, year = {2013}, doi = {10.1051/cocv/2012019}, mrnumber = {3049721}, zbl = {1263.49034}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2012019/} }
TY - JOUR AU - Jan, Sophie TI - Minimizing the fuel consumption of a vehicle from the Shell Eco-marathon: a numerical study JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 516 EP - 532 VL - 19 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2012019/ DO - 10.1051/cocv/2012019 LA - en ID - COCV_2013__19_2_516_0 ER -
%0 Journal Article %A Jan, Sophie %T Minimizing the fuel consumption of a vehicle from the Shell Eco-marathon: a numerical study %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 516-532 %V 19 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2012019/ %R 10.1051/cocv/2012019 %G en %F COCV_2013__19_2_516_0
Jan, Sophie. Minimizing the fuel consumption of a vehicle from the Shell Eco-marathon: a numerical study. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 516-532. doi : 10.1051/cocv/2012019. http://www.numdam.org/articles/10.1051/cocv/2012019/
[1] New smoothing techniques for solving bang-bang optimal control problems - Numerical results and statistical interpretation. Optim. Control Appl. Methods 23 (2002) 171-197. | MR | Zbl
and ,[2] Error estimates for the logarithmic barrier method in linear quadratic stochastic optimal control problems. Technical Report, INRIA RR 7455 (2010). | Zbl
and ,[3] Singular arcs in the generalized Goddard's problem. J. Optim. Theory Appl. 139 (2008) 439-461. | MR | Zbl
, and ,[4] Les mathématiques du mieux faire, Ellipses. La commande optimale pour les débutants 2 (2008). | Zbl
,[5] Optimal control, An introduction to the theory with applications, Oxford Applied Mathematics and Computing Science Series. The Clarendon Press Oxford University Press (1991). | MR | Zbl
,[6] Optimal control, An introduction. Birkhäuser Verlag (2001). | MR | Zbl
,[7] On minimizing the energy consumption of an electrical vehicle. Research Report RT-APO-11-4, IRIT, Université Paul Sabatier, Toulouse (2011).
, and ,[8] A generalized Legendre-Clebsch condition for the singular cases of optimal control. IBM J. Research Devel. 11 (1967) 361-372. | Zbl
,[9] Numerical methods for optimal control with binary control functions applied to a Lotka-Volterra type fishing problem, in Recent advances in optimization, Lect. Notes Econ. Math. Syst. 563 (2006) 269-289. | MR | Zbl
, , , and ,[10] Introduction to numerical analysis. Translated from the German by R. Bartels, W. Gautschi and C. Witzgall, Springer-Verlag (1980). | MR | Zbl
and ,[11] Contrôle optimal, Mathématiques Concrètes. Vuibert, Paris. Théorie & applications (2005). | Zbl
,Cité par Sources :