In this paper we investigate analytic affine control systems q̇ = X + uY, u ∈ [a,b] , where X,Y is an orthonormal frame for a generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type. We construct normal forms for such systems and, among other things, we study the connection between the presence of the singular trajectory starting at q0 on the boundary of the reachable set from q0 with the minimal number of analytic functions needed for describing the reachable set from q0.
Mots-clés : sub-lorentzian manifolds, geodesics, reachable sets, geometric optimality, affine control systems
@article{COCV_2012__18_4_1150_0, author = {Grochowski, Marek}, title = {The structure of reachable sets for affine control systems induced by generalized {Martinet} sub-lorentzian metrics}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1150--1177}, publisher = {EDP-Sciences}, volume = {18}, number = {4}, year = {2012}, doi = {10.1051/cocv/2011202}, mrnumber = {3019476}, zbl = {1268.53040}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2011202/} }
TY - JOUR AU - Grochowski, Marek TI - The structure of reachable sets for affine control systems induced by generalized Martinet sub-lorentzian metrics JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 1150 EP - 1177 VL - 18 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2011202/ DO - 10.1051/cocv/2011202 LA - en ID - COCV_2012__18_4_1150_0 ER -
%0 Journal Article %A Grochowski, Marek %T The structure of reachable sets for affine control systems induced by generalized Martinet sub-lorentzian metrics %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 1150-1177 %V 18 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2011202/ %R 10.1051/cocv/2011202 %G en %F COCV_2012__18_4_1150_0
Grochowski, Marek. The structure of reachable sets for affine control systems induced by generalized Martinet sub-lorentzian metrics. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 1150-1177. doi : 10.1051/cocv/2011202. http://www.numdam.org/articles/10.1051/cocv/2011202/
[1] Control Theory from Geometric Viewpoint, Encyclopedia of Mathematical Science 87. Springer (2004). | MR | Zbl
and ,[2] Sub-Riemannian Metrics on R3, Canadian Mathematical Society Conference Proceedings 25 (1998) 29-78. | Zbl
, , and ,[3] The Tangent Space in the sub-Riemannian Geometry, in Sub-Riemannian Geometry. Birkhäuser (1996). | MR | Zbl
,[4] Singular Trajectories and their Role in Control Theory. Springer-Verlag, Berlin (2003). | MR | Zbl
and ,[5] Introduction to Mathematical Theory of Control. Ameracan Institut of Mathematical Sciences (2007). | MR | Zbl
and ,[6] Normal forms of germes of contact sub-Lorentzian structures on R3. Differentiability of the sub-Lorentzian distance. J. Dyn. Control Syst. 9 (2003) 531-547. | MR | Zbl
,[7] Properties of reachable sets in the sub-Lorentzian geometry. J. Geom. Phys. 59 (2009) 885-900. | MR | Zbl
,[8] Reachable sets for contact sub-Lorentzian structures on R3. Application to control affine systems on R3 with a scalar input. J. Math. Sci. 177 (2011) 383-394. | MR | Zbl
,[9] Normal forms and reachable sets for analytic martinet sub-Lorentzian structures of Hamiltonian type. J. Dyn. Control Syst. 17 (2011) 49-75. | MR | Zbl
,[10] Singularities and normal forms of generic 2-distributions on 3-manifolds. Stud. Math. 113 (1995) 223-248. | MR | Zbl
and ,[11] Nonholonomic Lorentzian geometry on some H-type groups. J. Geom. Anal. 19 (2009) 864-889. | MR | Zbl
and ,[12] Shortest paths for sub-Riemannian metrics on Rank-Two distributions. Memoires of the American Mathematical Society 118 (1995) 1-104. | MR | Zbl
and ,[13] Ensembles semi-analytiques. Inst. Hautes Études Sci., Bures-sur-Yvette, France (1964)
,[14] Typical Singularities of Differential 1-Forms and Pfaffian Equations, Translations of Math. Monographs 113. Amer. Math. Soc. Providence (1991). | MR | Zbl
,Cité par Sources :