Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpiński gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpiński fractal. The abstract results are illustrated by explicit examples.
Mots clés : Sierpiński gasket, nonlinear elliptic equation, Dirichlet form, weak laplacian
@article{COCV_2012__18_4_941_0, author = {Bonanno, Gabriele and Bisci, Giovanni Molica and R\u{a}dulescu, Vicen\c{t}iu}, title = {Variational analysis for a nonlinear elliptic problem on the {Sierpi\'nski} gasket}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {941--953}, publisher = {EDP-Sciences}, volume = {18}, number = {4}, year = {2012}, doi = {10.1051/cocv/2011199}, mrnumber = {3019466}, zbl = {1278.35088}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2011199/} }
TY - JOUR AU - Bonanno, Gabriele AU - Bisci, Giovanni Molica AU - Rădulescu, Vicenţiu TI - Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 941 EP - 953 VL - 18 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2011199/ DO - 10.1051/cocv/2011199 LA - en ID - COCV_2012__18_4_941_0 ER -
%0 Journal Article %A Bonanno, Gabriele %A Bisci, Giovanni Molica %A Rădulescu, Vicenţiu %T Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 941-953 %V 18 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2011199/ %R 10.1051/cocv/2011199 %G en %F COCV_2012__18_4_941_0
Bonanno, Gabriele; Bisci, Giovanni Molica; Rădulescu, Vicenţiu. Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 941-953. doi : 10.1051/cocv/2011199. http://www.numdam.org/articles/10.1051/cocv/2011199/
[1] Some properties of the spectrum of the Sierpiński gasket in a magnetic field. Phys. Rev. B 29 (1984) 5504-5508. | MR
,[2] Multiplicity theorems for the Dirichlet problem involving the p-Laplacian. Nonlinear Anal. 54 (2003) 1-7. | MR | Zbl
and ,[3] Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009 (2009) 1-20. | EuDML | MR | Zbl
and ,[4] Infinitely many solutions for a Dirichlet problem involving the p-Laplacian. Proc. R. Soc. Edinb. Sect. A 140 (2010) 737-752. | MR | Zbl
and ,[5] Infinitely many weak solutions for a class of quasilinear elliptic systems. Math. Comput. Model. 52 (2010) 152-160. | MR | Zbl
, and ,[6] B.E. Breckner, D. Repovš and Cs. Varga, On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket. Nonlinear Anal. 73 (2010) 2980-2990. | MR | Zbl
[7] B.E. Breckner, V. Rădulescu and Cs. Varga, Infinitely many solutions for the Dirichlet problem on the Sierpiński gasket. Analysis and Applications 9 (2011) 235-248. | Zbl
[8] Infinitely many solutions for perturbed hemivariational inequalities. Bound. Value Probl. 2011 (2011) 1-19. | EuDML | Zbl
and ,[9] Existence results for an Elliptic Dirichlet problem, Le Matematiche LXVI, Fasc. I (2011) 133-141. | MR | Zbl
and ,[10] Semilinear PDEs on self-similar fractals. Commun. Math. Phys. 206 (1999) 235-245. | MR | Zbl
,[11] Fractal Geometry : Mathematical Foundations and Applications, 2nd edition. John Wiley & Sons (2003). | MR | Zbl
,[12] Nonlinear elliptical equations on the Sierpiński gasket. J. Math. Anal. Appl. 240 (1999) 552-573. | MR | Zbl
and ,[13] On a spectral analysis for the Sierpiński gasket. Potential Anal. 1 (1992) 1-35. | MR | Zbl
and ,[14] Random walks and diffusions on fractals, in Percolation Theory and Ergodic Theory of Infinite Particle Systems, IMA Math. Appl. 8, edited by H. Kesten. Springer, New York (1987) 121-129. | MR | Zbl
,[15] Multiple solutions for a class of nonlinear elliptic equations on the Sierpiński gasket. Sci. China Ser. A 47 (2004) 772-786. | Zbl
,[16] Semilinear elliptic equations on fractal sets. Acta Mathematica Scientica 29 B (2009) 232-242. | MR | Zbl
and ,[17] New competition phenomena in Dirichlet problems. J. Math. Pures Appl. 94 (2010) 555-570. | Zbl
and ,[18] Variational Principles in Mathematical Physics, Geometry, and Economics : Qualitative Analysis of Nonlinear Equations and Unilateral Problems. Cambridge University Press, Cambridge (2010). | Zbl
, and ,[19] Analysis on Fractals. Cambridge University Press, Cambridge (2001). | MR | Zbl
,[20] A diffusion process on a fractal. Probabilistic Methods in Mathematical Physics, Katata/Kyoto (1985) 251-274; Academic Press, Boston, MA (1987). | MR | Zbl
,[21] How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156 (1967) 636-638.
,[22] Fractals : Form, Chance and Dimension. W.H. Freeman & Co., San Francisco (1977). | MR | Zbl
,[23] The Fractal Geometry of Nature. W.H. Freeman & Co., San Francisco (1982). | MR | Zbl
,[24] Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential. Comm. Partial Differential Equations 21 (1996) 721-733. | MR | Zbl
and ,[25] An elliptic problem with arbitrarily small positive solutions, Proceedings of the Conference on Nonlinear Differential Equations (Coral Gables, FL, 1999). Electron. J. Differ. Equ. Conf. 5. Southwest Texas State Univ., San Marcos, TX (2000) 301-308. | MR | Zbl
and ,[26] A spectrum of harmonic excitations on fractals. J. Phys. Lett. 45 (1984) 191-206. | MR
,[27] Random walks on fractal structures and percolation clusters. J. Phys. Lett. 44 (1983) L13-L22.
and ,[28] A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000) 401-410. | MR | Zbl
,[29] Sur une courbe dont tout point est un point de ramification. Comptes Rendus (Paris) 160 (1915) 302-305. | JFM
,[30] Analysis on fractals. Notices Amer. Math. Soc. 46 (1999) 1199-1208. | MR | Zbl
,[31] Solvability for differential equations on fractals. J. Anal. Math. 96 (2005) 247-267. | MR | Zbl
,[32] Differential Equations on Fractals, A Tutorial. Princeton University Press, Princeton, NJ (2006). | MR | Zbl
,Cité par Sources :