In this paper we study the compact and convex sets that minimize
Mots clés : shape optimization, distance functional, optimality conditions, convex analysis, second order variation, gamma-convergence
@article{COCV_2012__18_4_1049_0, author = {Lemenant, Antoine and Mainini, Edoardo}, title = {On convex sets that minimize the average distance}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1049--1072}, publisher = {EDP-Sciences}, volume = {18}, number = {4}, year = {2012}, doi = {10.1051/cocv/2011190}, mrnumber = {3019472}, zbl = {1259.49065}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2011190/} }
TY - JOUR AU - Lemenant, Antoine AU - Mainini, Edoardo TI - On convex sets that minimize the average distance JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 1049 EP - 1072 VL - 18 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2011190/ DO - 10.1051/cocv/2011190 LA - en ID - COCV_2012__18_4_1049_0 ER -
%0 Journal Article %A Lemenant, Antoine %A Mainini, Edoardo %T On convex sets that minimize the average distance %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 1049-1072 %V 18 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2011190/ %R 10.1051/cocv/2011190 %G en %F COCV_2012__18_4_1049_0
Lemenant, Antoine; Mainini, Edoardo. On convex sets that minimize the average distance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 1049-1072. doi : 10.1051/cocv/2011190. http://www.numdam.org/articles/10.1051/cocv/2011190/
[1] Curvature and distance function from a manifold. J. Geom. Anal. 8 (1998) 723-748. Dedicated to the memory of Fred Almgren. | MR | Zbl
and ,[2] Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR | Zbl
and ,[3] Optimal convex shapes for concave functionals. ESAIM : COCV (in press). | Numdam | Zbl
, and ,[4] Shape optimization problems over classes of convex domains. J. Convex Anal. 4 (1997) 343-351. | MR | Zbl
and ,[5] Asymptotical compliance optimization for connected networks. Netw. Heterog. Media 2 (2007) 761-777 (electronic). | MR | Zbl
and ,[6] Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Scuola Norm. Super. Pisa Cl. Sci. 2 (2003) 631-678. | Numdam | MR | Zbl
and ,[7] Optimal transportation problems with free Dirichlet regions, in Variational methods for discontinuous structures, Progr. Nonlinear Differential Equations Appl. 51. Birkhäuser, Basel (2002) 41-65. | MR | Zbl
, and ,[8] Optimal urban networks via mass transportation, Lecture Notes in Mathematics 1961. Springer-Verlag, Berlin (2009). | MR | Zbl
, , and ,[9] Stationary configurations for the average distance functional and related problems. Control Cybernet. 38 (2009) 1107-1130. | MR | Zbl
, and ,[10] Shape analysis via distance functions : local theory, in Boundaries, interfaces, and transitions (Banff, AB, 1995), CRM Proc. Lect. Notes 13. Amer. Math. Soc. Providence, RI (1998) 91-123. | MR | Zbl
and ,[11] Curvature measures. Trans. Amer. Math. Soc. 93 (1959) 418-491. | MR | Zbl
,[12] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969). | MR | Zbl
,[13] Variation et optimisation de formes, Mathématiques & Applications (Berlin) [Mathematics & Applications] 48. Springer, Berlin (2005). Une analyse géométrique [a geometric analysis]. | MR | Zbl
and ,[14] About the regularity of average distance minimizers in R2. J. Convex Anal. 18 (2011) 949-981. | MR | Zbl
,[15] A presentation of the average distance minimizing problem. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 390 (2010) 117-146 (Proceedings of St. Petersburg Seminar, available online at http://www.pdmi.ras.ru/znsl/2011/v390/abs117.html). | Zbl
,[16] Hamilton-jacobi equations and distance functions on riemannian manifolds. Appl. Math. Optim. 47 (2003) 1-25. | MR | Zbl
and ,[17] Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A 14 (1977) 526-529. | MR | Zbl
and ,[18] Qualitative properties of maximum distance minimizers and average distance minimizers in Rn. J. Math. Sci. (N. Y.) 122 (2004) 3290-3309. Problems in mathematical analysis. | MR | Zbl
and ,[19] Blow-up of optimal sets in the irrigation problem. J. Geom. Anal. 15 (2005) 343-362. | MR | Zbl
and ,[20] Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis 3. Australian National University, Australian National University Centre for Mathematical Analysis, Canberra (1983). | MR | Zbl
,[21] Partial geometric regularity of some optimal connected transportation networks. J. Math. Sci. (N.Y.) 132 (2006) 522-552. Problems in mathematical analysis. | MR | Zbl
,[22] Some explicit examples of minimizers for the irrigation problem. J. Convex Anal. 17 (2010) 583-595. | MR | Zbl
,Cité par Sources :