Root growth: homogenization in domains with time dependent partial perforations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 856-876.

In this article we derive a macroscopic model for the time evolution of root density, starting from a discrete mesh of roots, using homogenization techniques. In the microscopic model each root grows vertically according to an ordinary differential equation. The roots growth rates depend on the spatial distribution of nutrient in the soil, which also evolves in time, leading to a fully coupled non-linear problem. We derive an effective partial differential equation for the root tip surface and for the nutrient density.

DOI : 10.1051/cocv/2011184
Classification : 35B27, 35K55, 92C99s
Mots clés : homogenization, root growth, time dependent domains
@article{COCV_2012__18_3_856_0,
     author = {Capdeboscq, Yves and Ptashnyk, Mariya},
     title = {Root growth: homogenization in domains with time dependent partial perforations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {856--876},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {3},
     year = {2012},
     doi = {10.1051/cocv/2011184},
     mrnumber = {3041667},
     zbl = {1259.35023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2011184/}
}
TY  - JOUR
AU  - Capdeboscq, Yves
AU  - Ptashnyk, Mariya
TI  - Root growth: homogenization in domains with time dependent partial perforations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 856
EP  - 876
VL  - 18
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2011184/
DO  - 10.1051/cocv/2011184
LA  - en
ID  - COCV_2012__18_3_856_0
ER  - 
%0 Journal Article
%A Capdeboscq, Yves
%A Ptashnyk, Mariya
%T Root growth: homogenization in domains with time dependent partial perforations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 856-876
%V 18
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2011184/
%R 10.1051/cocv/2011184
%G en
%F COCV_2012__18_3_856_0
Capdeboscq, Yves; Ptashnyk, Mariya. Root growth: homogenization in domains with time dependent partial perforations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 856-876. doi : 10.1051/cocv/2011184. http://www.numdam.org/articles/10.1051/cocv/2011184/

[1] E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18 (1992) 481-496. | MR | Zbl

[2] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | MR | Zbl

[3] G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, edited by A. Bourgeat et al., World Scientific Pub., Singapore (1996) 15-25.

[4] P. Bastian, A. Chavarría-Krauser, Ch. Engwer, W. Jäger, S. Marnach and M. Ptashnyk, Modelling in vitro growth of dense root networks. J. Theor. Biol. 254 (2008) 99-109.

[5] M. Caloin and O. Yu, An extension of the logistic model of plant growth. Ann. Bot. 49 (1982) 599-607.

[6] A. Chavarria-Krauser and U. Schurr, A cellular growth model for root tips. J. Theor. Biol. 230 (2004) 21-32. | MR

[7] S. Chuai-Aree, W. Jäger, H.G. Bock and S. Siripant, Modeling, simulation and visualization of plant root growth and diffusion processes in soil volume, 4th International Workshop on Functional-Structural Plant Models, edited by C. Godin et al. Montpellier, France (2004) 289-293.

[8] D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures. Springer (1999). | MR | Zbl

[9] L. Dupuy, T. Fourcaud, A. Stokes and F. Danjon, A density-based approach for the modelling of root architecture : application to Maritime pine (Pinus pinaster Ait.) root systems. J. Theor Biol. 236 (2005) 323-334.

[10] L. Dupuy, P.J. Gregory and A.G. Bengough, Root growth models : towards a new generation of continuous approaches. J. Exp. Bot. 61 (2010) 2131-2143.

[11] R.O. Erickson, Modeling of plant growth. Ann. Rev. Plant Physiol. 27 (1976) 407-434.

[12] P. Grabarnik, L. Pagès and A.G. Bengough, Geometrical properties of simulated maize root systems : consequences for length density and intersection density. Plant Soil 200 (1998) 157-167.

[13] A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM J. Math. Anal. 40 (2008) 215-237. | MR | Zbl

[14] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl

[15] L. Pagès, How to include organ interactions in models of the root system architecture? The concept of endogenous environment. Ann. For. Sci. 57 (2000) 535-541.

[16] L. Pagès, M.O. Jordan and D. Picard, A simulation-model of the three-dimensional architecture of the maize root-system. Plant Soil 1989 (1989) 147-154.

[17] L. Pagès, G. Vercambre, J.-L. Drouet, F. Lecompte, C. Collet and J. Le Bot, Root Typ : a generic model to depict and analyse the root system architecture. Plant Soil 258 (2004) 103-119.

[18] P. Prusinkiewicz, Modeling plant growth and development. Current Opinion in Plant Biol. 7 (2004) 79-83.

[19] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants. Springer-Vergal, New York, USA (1990). | MR | Zbl

[20] O. Wilderotter, An adaptive numerical method for the Richards equation with root growth. Plant Soil 251 (2003) 255-267.

Cité par Sources :