Linearization techniques for 𝕃 See PDF-control problems and dynamic programming principles in classical and 𝕃 See PDF-control problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 836-855.

The aim of the paper is to provide a linearization approach to the 𝕃 See PDF-control problems. We begin by proving a semigroup-type behaviour of the set of constraints appearing in the linearized formulation of (standard) control problems. As a byproduct we obtain a linear formulation of the dynamic programming principle. Then, we use the 𝕃 p See PDF approach and the associated linear formulations. This seems to be the most appropriate tool for treating 𝕃 See PDF problems in continuous and lower semicontinuous setting.

DOI : 10.1051/cocv/2011183
Classification : 34A60, 49J45, 49L20, 49L25, 93C15
Mots clés : dynamic programming principle, essential supremum, hj equations, occupational measures, $\mathbb {L}^{p}$See pdf approximations
@article{COCV_2012__18_3_836_0,
     author = {Goreac, Dan and Serea, Oana-Silvia},
     title = {Linearization techniques for $\mathbb {L}^{\infty }${See} {PDF-control} problems and dynamic programming principles in classical and $\mathbb {L}^{\infty }${See} {PDF-control} problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {836--855},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {3},
     year = {2012},
     doi = {10.1051/cocv/2011183},
     mrnumber = {3041666},
     zbl = {1262.49030},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2011183/}
}
TY  - JOUR
AU  - Goreac, Dan
AU  - Serea, Oana-Silvia
TI  - Linearization techniques for $\mathbb {L}^{\infty }$See PDF-control problems and dynamic programming principles in classical and $\mathbb {L}^{\infty }$See PDF-control problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 836
EP  - 855
VL  - 18
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2011183/
DO  - 10.1051/cocv/2011183
LA  - en
ID  - COCV_2012__18_3_836_0
ER  - 
%0 Journal Article
%A Goreac, Dan
%A Serea, Oana-Silvia
%T Linearization techniques for $\mathbb {L}^{\infty }$See PDF-control problems and dynamic programming principles in classical and $\mathbb {L}^{\infty }$See PDF-control problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 836-855
%V 18
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2011183/
%R 10.1051/cocv/2011183
%G en
%F COCV_2012__18_3_836_0
Goreac, Dan; Serea, Oana-Silvia. Linearization techniques for $\mathbb {L}^{\infty }$See PDF-control problems and dynamic programming principles in classical and $\mathbb {L}^{\infty }$See PDF-control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 836-855. doi : 10.1051/cocv/2011183. http://www.numdam.org/articles/10.1051/cocv/2011183/

[1] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems and Control : Foundations and Applications, Birkhäuser, Boston (1997). | MR | Zbl

[2] G. Barles, Solutions de viscosity des equations de Hamilton-Jacobi (Viscosity solutions of Hamilton-Jacobi equations), Mathematiques & Applications (Paris) 17. Springer-Verlag, Paris (1994). | MR | Zbl

[3] G. Barles and E.R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM : M2AN 36 (2002) 33-54. | Numdam | MR | Zbl

[4] E.N. Barron and H. Ishii, The bellman equation for minimizing the maximum cost. Nonlinear Anal. 13 (1989) 1067-1090. | MR | Zbl

[5] E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equ. 15 (1990) 1713-1742. | MR | Zbl

[6] A.G. Bhatt and V.S. Borkar, Occupation measures for controlled markov processes : Characterization and optimality. Ann. Probab. 24 (1996) 1531-1562. | MR | Zbl

[7] V. Borkar and V. Gaitsgory, Averaging of singularly perturbed controlled stochastic differential equations. Appl. Math. Optim. 56 (2007) 169-209. | MR | Zbl

[8] R. Buckdahn, D. Goreac and M. Quincampoix, Stochastic optimal control and linear programming approach. Appl. Math. Optim. 63 (2011) 257-276. | MR | Zbl

[9] W.H. Fleming and D. Vermes, Convex duality approach to the optimal control of diffusions. SIAM J. Control Optim. 27 (1989) 1136-1155. | MR | Zbl

[10] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 (1993) 257-272. | MR | Zbl

[11] V. Gaitsgory and M. Quincampoix, Linear programming approach to deterministic infinite horizon optimal control problems with discounting. SIAM J. Control Optim. 48 (2009) 2480-2512. | MR | Zbl

[12] V. Gaitsgory and S. Rossomakhine, Linear programming approach to deterministic long run average problems of optimal control. SIAM J. Control Optim. 44 (2006) 2006-2037. | MR | Zbl

[13] D. Goreac and O.S. Serea, Discontinuous control problems for non-convex dynamics and near viability for singularly perturbed control systems. Nonlinear Anal. 73 (2010) 2699-2713. | MR | Zbl

[14] D. Goreac and O.S. Serea, Mayer and optimal stopping stochastic control problems with discontinuous cost. J. Math. Anal. Appl. 380 (2011) 327-342. | MR | Zbl

[15] N.V. Krylov, On the rate of convergence of finte-difference approximations for bellman's equations with variable coefficients. Probab. Theory Relat. Fields 117 (2000) 1-16. | MR | Zbl

[16] S. Plaskacz and M. Quincampoix, Value-functions for differential games and control systems with discontinuous terminal cost. SIAM J. Control Optim. 39 (2001) 1485-1498. | MR | Zbl

[17] M. Quincampoix and O.S. Serea, The problem of optimal control with reflection studied through a linear optimization problem stated on occupational measures. Nonlinear Anal. 72 (2010) 2803-2815. | MR | Zbl

[18] O.S. Serea, Discontinuous differential games and control systems with supremum cost. J. Math. Anal. Appl. 270 (2002) 519-542. | MR | Zbl

[19] O.S. Serea, On reflecting boundary problem for optimal control. SIAM J. Control Optim. 42 (2003) 559-575. | MR | Zbl

[20] A.I. Subbotin, Generalized solutions of first-order PDEs, The dynamical optimization perspective. Birkhäuser, Basel (1994). | MR | Zbl

[21] C. Villani, Optimal Transport : Old and New. Springer (2009). | MR | Zbl

[22] R. Vinter, Convex duality and nonlinear optimal control. SIAM J. Control Optim. 31 (1993) 518-538. | MR | Zbl

Cité par Sources :