In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex objective functions on Hadamard manifolds. To reach this goal, we initially extend the concepts of regular and generalized subgradient from Euclidean spaces to Hadamard manifolds and prove that, in the convex case, these concepts coincide with the classical one. For the minimization problem, assuming that the function is bounded from below, in the quasiconvex and lower semicontinuous case, we prove the convergence of the iterations given by the method. Furthermore, under the assumptions that the sequence of proximal parameters is bounded and the function is continuous, we obtain the convergence to a generalized critical point. In particular, our work extends the applications of the proximal point methods for solving constrained minimization problems with nonconvex objective functions in Euclidean spaces when the objective function is convex or quasiconvex on the manifold.
Mots clés : proximal point method, quasiconvex function, Hadamard manifolds, full convergence
@article{COCV_2012__18_2_483_0, author = {Papa Quiroz, Erik A. and Oliveira, P. Roberto}, title = {Full convergence of the proximal point method for quasiconvex functions on {Hadamard} manifolds}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {483--500}, publisher = {EDP-Sciences}, volume = {18}, number = {2}, year = {2012}, doi = {10.1051/cocv/2011102}, mrnumber = {2954635}, zbl = {1273.90162}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2011102/} }
TY - JOUR AU - Papa Quiroz, Erik A. AU - Oliveira, P. Roberto TI - Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 483 EP - 500 VL - 18 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2011102/ DO - 10.1051/cocv/2011102 LA - en ID - COCV_2012__18_2_483_0 ER -
%0 Journal Article %A Papa Quiroz, Erik A. %A Oliveira, P. Roberto %T Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 483-500 %V 18 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2011102/ %R 10.1051/cocv/2011102 %G en %F COCV_2012__18_2_483_0
Papa Quiroz, Erik A.; Oliveira, P. Roberto. Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 483-500. doi : 10.1051/cocv/2011102. http://www.numdam.org/articles/10.1051/cocv/2011102/
[1] Convergence of the iterates of descent methods for analytic cost function. SIAM J. Optim. 16 (2005) 531-547. | MR | Zbl
, and ,[2] Hessian Riemannian gradient flows in convex programming. SIAM J. Optim. 43 (2004) 477-501. | MR | Zbl
, and ,[3] On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. B 116 (2009) 5-16. | MR | Zbl
and ,[4] “Worthwhile-to-move” behaviors as temporary satisficing without too many sacrificing processes. Preprint arXiv:0905.1238 (2009).
and ,[5] Regularized Lotka-Volterra dynamical system as continuous proximal-like method in optimization. J. Optim. Theory Appl. 121 (2004) 541-580. | MR | Zbl
and ,[6] Lectures on Spaces of Nonpositive Curvature. Birkhäuser, Basel (1995). | MR
,[7] Calculus of variation l∞. Appl. Math. Opt. 35 (1997) 237-263. | MR | Zbl
and ,[8] Lectures on Modern Convex Optimization : Analysis and Engineering Applications, MPS/SIAM Series on Optimization 2. SIAM (2001). | MR | Zbl
and ,[9] Convex Optimization. Cambridge University Press, Cambridge (2004). | MR | Zbl
and ,[10] Metric Spaces of Non-Positive Curvature. Springer-Verlag, Berlin (1999). | MR | Zbl
and ,[11] Proximal-like algorithm for a class of nonconvex programming. Pacific Journal of Optimization 4 (2008) 319-333. | MR | Zbl
and ,[12] G.F.M. Cunha, J.X. da Cruz Neto, and P.R. liveira, A proximal point algorithm with φ-divergence to quasiconvex programming. Optimization 59 (2010) 777-792. | MR | Zbl
[13] Convex-and monotone-transformable mathematical programming and a proximal-like point method. J. Glob. Optim. 35 (2006) 53-69. | MR | Zbl
, , and ,[14] Riemannian Geometry. Birkhäuser, Boston (1992). | MR | Zbl
,[15] Geometry of Nonpositively Curved Manifolds. University of Chicago Press, Chicago (1996). | MR | Zbl
,[16] Proximal point algorithm on Riemannian manifolds. Optimization 51 (2002) 257-270. | MR | Zbl
and ,[17] Quasiconvex Optimization and Location Theory. Kluwer Academic Publishers, Dordrecht (1998). | MR | Zbl
,[18] Non Positive Curvature : Geometric and Analytic Aspects. Lectures in Mathematics, Base; Boston, Birkhäuser (1997). | Zbl
,[19] Proximal point methods and nonconvex optimization. J. Glob. Optim. 13 (1998) 389-406. | MR | Zbl
and ,[20] Convergence and efficiency of subgradient methods for quasiconvex minimization. Math. Program. A 90 (2001) 1-25. | MR | Zbl
,[21] Brève communication. Régularisation d'inéquations variationelles par approximations successives. Revue Française D'Informatique et de Recherche Opérationelle 4 (1970) 154-158. | Numdam | Zbl
,[22] On the Riemannian geometry defined by self-concordant barrier and interior-point methods. Found. Comput. Math. 2 (2002) 333-361. | MR | Zbl
and ,[23] Entropy-like proximal algorithms based on a second-order homogeneous distances function for quasiconvex programming. J. Glob. Optim. 39 (2007) 555-575. | Zbl
and ,[24] New Results on Linear Optimization Through Diagonal Metrics and Riemannian Geometry Tools. Technical Report, ES-645/04, PESC COPPE, Federal University of Rio de Janeiro (2004).
and ,[25] A new self-concordant barrier for the hypercube. J. Optim. Theory Appl. 135 (2007) 475-490. | MR | Zbl
and ,[26] Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16 (2009) 46-69. | MR | Zbl
and ,[27] Smooth Nonlinear Optimization. Kluwer Academic Publishers (1997). | MR | Zbl
,[28] Domains of positivity. Abh. Math. Sem. Univ. Hamburg 24 (1960) 189-235. | MR | Zbl
,[29] Monotone operations and the proximal point method. SIAM J. Control Optim. 14 (1976) 877-898. | MR | Zbl
,[30] Variational Analysis, Grundlehren der Mathematischen, Wissenschaften 317. Springer (1990). | MR | Zbl
and ,[31] Riemannian Geometry. American Mathematical Society, Providence, RI (1996). | MR | Zbl
,[32] A proximal method with separable Bregman distance for quasiconvex minimization on the nonnegative orthant. Eur. J. Oper. Res. 201 (2010) 365-376. | MR | Zbl
, , and ,[33] Mathematical Economics, 2nd Edition. Cambrigde University Press, Cambridge (1995). | MR | Zbl
,[34] Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109 (2001) 475-494. | MR | Zbl
,[35] Convex Function and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers (1994). | MR | Zbl
,[36] Handbook of Semidefinite Programming Theory, Algorithms and Applications, 1st Edition. Internat. Ser. Oper. Management Sci., Springer (2005). | MR | Zbl
, and , Eds.,Cité par Sources :