This article considers the linear 1-d Schrödinger equation in (0,π) perturbed by a vanishing viscosity term depending on a small parameter ε > 0. We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls vε as ε goes to zero. It is shown that, for any time T sufficiently large but independent of ε and for each initial datum in H-1(0,π), there exists a uniformly bounded family of controls (vε)ε in L2(0, T) acting on the extremity x = π. Any weak limit of this family is a control for the Schrödinger equation.
Mots clés : null-controllability, Schrödinger equation, complex Ginzburg-Landau equation, moment problem, biorthogonal, vanishing viscosity
@article{COCV_2012__18_1_277_0, author = {Micu, Sorin and Roven\c{t}a, Ionel}, title = {Uniform controllability of the linear one dimensional {Schr\"odinger} equation with vanishing viscosity}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {277--293}, publisher = {EDP-Sciences}, volume = {18}, number = {1}, year = {2012}, doi = {10.1051/cocv/2010055}, mrnumber = {2887936}, zbl = {1242.93019}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010055/} }
TY - JOUR AU - Micu, Sorin AU - Rovenţa, Ionel TI - Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 277 EP - 293 VL - 18 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010055/ DO - 10.1051/cocv/2010055 LA - en ID - COCV_2012__18_1_277_0 ER -
%0 Journal Article %A Micu, Sorin %A Rovenţa, Ionel %T Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 277-293 %V 18 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010055/ %R 10.1051/cocv/2010055 %G en %F COCV_2012__18_1_277_0
Micu, Sorin; Rovenţa, Ionel. Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 277-293. doi : 10.1051/cocv/2010055. http://www.numdam.org/articles/10.1051/cocv/2010055/
[1] Boundary control of the linearized Ginzburg-Landau model of vortex shedding. SIAM J. Control Optim. 43 (2005) 1953-1971. | MR | Zbl
, and ,[2] Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press (1995). | MR | Zbl
and ,[3] Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems. Commun. Pure Appl. Math. XXXII (1979) 555-587. | MR | Zbl
and ,[4] On the possibility of soft and hard turbulence in the complex Ginzburg Landau equation. Physica D 44 (1990) 421-444. | MR | Zbl
, , , and ,[5] Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18 (2002) 1537-1554. | MR | Zbl
and ,[6] Control and nonlinearity, Mathematical Surveys and Monographs 136. Am. Math. Soc., Providence (2007). | MR | Zbl
,[7] Singular optimal control : a linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44 (2005) 237-257. | MR | Zbl
and ,[8] Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal. 82 (1983) 27-70. | MR | Zbl
,[9] A weighted identity for partial differential operators of second order and its applications. C. R. Acad. Sci. Paris, Sér. I 342 (2006) 579-584. | MR
,[10] Null controllability for the parabolic equation with a complex principal part. J. Funct. Anal. 257 (2009) 1333-1354. | MR | Zbl
,[11] Controllability of Evolution Equations, Lect. Notes Ser. 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). | MR | Zbl
and ,[12] A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852-868. | MR | Zbl
,[13] Dispersive Properties of Numerical Schemes for Nonlinear Schrödinger Equations, in Foundations of Computational Mathematics, Santander 2005, London Math. Soc. Lect. Notes 331, L.M. Pardo, A. Pinkus, E. Suli and M.J. Todd Eds., Cambridge University Press (2006) 181-207. | MR | Zbl
and ,[14] Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47 (2009) 1366-1390. | MR | Zbl
and ,[15] A note on Fourier transform. J. London Math. Soc. 9 (1934) 29-32. | MR | Zbl
,[16] Some trigonometric inequalities with applications to the theory of series. Math. Zeits. 41 (1936) 367-379. | MR | Zbl
,[17] Pseudo-Périodicité et Séries de Fourier Lacunaires. Ann. Scient. Ec. Norm. Sup. 37 (1962) 93-95. | Numdam | MR | Zbl
,[18] Fourier Series in Control Theory. Springer-Verlag, New York (2005). | MR | Zbl
and ,[19] Uniform controllability of scalar conservation laws in the vanishing viscosity limit. Preprint (2010). | Zbl
,[20] Contrôle de l'équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. | Zbl
,[21] The complex Ginzburg Landau equation as a model problem, in Dynamical Systems and Probabilistic Methods in Partial Differential Equations, in Lect. Appl. Math. 31, Am. Math. Soc., Providence (1996) 141-190. | MR | Zbl
and ,[22] Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl. 79 (2000) 741-808. | MR | Zbl
, and ,[23] Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32 (1994) 24-34. | MR | Zbl
,[24] Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Probl. 24 (2008) 150-170. | MR | Zbl
, and ,[25] A spectral study of the boundary controllability of the linear 2-D wave equation in a rectangle. Asymptot. Anal. 66 (2010) 139-160. | MR | Zbl
and ,[26] Fourier Transforms in Complex Domains, AMS Colloq. Publ. 19. Am. Math. Soc., New York (1934). | MR | Zbl
and ,[27] Completeness of sets of complex exponentials. Adv. Math. 24 (1977) 1-62. | MR | Zbl
,[28] Null controllability of the complex Ginzburg Landau equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 649-673. | Numdam | MR | Zbl
and ,[29] Shock wave dynamics in a discrete nonlinear Schrödinger equation with internal losses. Phys. Rev. 62 (2000) 8651-8656. | MR
, and ,[30] Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts, Springer, Basel (2009). | MR | Zbl
and ,[31] An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980). | MR | Zbl
,[32] Mathematical Control Theory : An Introduction. Birkhäuser, Basel (1992). | MR | Zbl
,[33] A remark on null exact controllability of the heat equation. SIAM J. Control Optim. 40 (2001) 39-53. | MR | Zbl
,Cité par Sources :