A phase-field model for compliance shape optimization in nonlinear elasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 229-258.

Shape optimization of mechanical devices is investigated in the context of large, geometrically strongly nonlinear deformations and nonlinear hyperelastic constitutive laws. A weighted sum of the structure compliance, its weight, and its surface area are minimized. The resulting nonlinear elastic optimization problem differs significantly from classical shape optimization in linearized elasticity. Indeed, there exist different definitions for the compliance: the change in potential energy of the surface load, the stored elastic deformation energy, and the dissipation associated with the deformation. Furthermore, elastically optimal deformations are no longer unique so that one has to choose the minimizing elastic deformation for which the cost functional should be minimized, and this complicates the mathematical analysis. Additionally, along with the non-uniqueness, buckling instabilities can appear, and the compliance functional may jump as the global equilibrium deformation switches between different bluckling modes. This is associated with a possible non-existence of optimal shapes in a worst-case scenario. In this paper the sharp-interface description of shapes is relaxed via an Allen-Cahn or Modica-Mortola type phase-field model, and soft material instead of void is considered outside the actual elastic object. An existence result for optimal shapes in the phase field as well as in the sharp-interface model is established, and the model behavior for decreasing phase-field interface width is investigated in terms of Γ-convergence. Computational results are based on a nested optimization with a trust-region method as the inner minimization for the equilibrium deformation and a quasi-Newton method as the outer minimization of the actual objective functional. Furthermore, a multi-scale relaxation approach with respect to the spatial resolution and the phase-field parameter is applied. Various computational studies underline the theoretical observations.

DOI : 10.1051/cocv/2010045
Classification : 49Q10, 74P05, 49J20
Mots-clés : shape optimization, nonlinear elasticity, phase-field model, buckling deformations, Γ-convergence
@article{COCV_2012__18_1_229_0,
     author = {Penzler, Patrick and Rumpf, Martin and Wirth, Benedikt},
     title = {A phase-field model for compliance shape optimization in nonlinear elasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {229--258},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {1},
     year = {2012},
     doi = {10.1051/cocv/2010045},
     mrnumber = {2887934},
     zbl = {1251.49054},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2010045/}
}
TY  - JOUR
AU  - Penzler, Patrick
AU  - Rumpf, Martin
AU  - Wirth, Benedikt
TI  - A phase-field model for compliance shape optimization in nonlinear elasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 229
EP  - 258
VL  - 18
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2010045/
DO  - 10.1051/cocv/2010045
LA  - en
ID  - COCV_2012__18_1_229_0
ER  - 
%0 Journal Article
%A Penzler, Patrick
%A Rumpf, Martin
%A Wirth, Benedikt
%T A phase-field model for compliance shape optimization in nonlinear elasticity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 229-258
%V 18
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2010045/
%R 10.1051/cocv/2010045
%G en
%F COCV_2012__18_1_229_0
Penzler, Patrick; Rumpf, Martin; Wirth, Benedikt. A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 229-258. doi : 10.1051/cocv/2010045. http://www.numdam.org/articles/10.1051/cocv/2010045/

[1] G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences 146. Springer-Verlag, New York (2002). | MR | Zbl

[2] G. Allaire, Topology Optimization with the Homogenization and the Level-Set Method, in Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, NATO Science Series II : Mathematics, Physics and Chemistry 170, Springer (2004) 1-13. | MR | Zbl

[3] G. Allaire, E. Bonnetier, G. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27-68. | MR | Zbl

[4] G. Allaire, F. Jouve and A.-M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris, Sér. I 334 (2002) 1125-1130. | MR | Zbl

[5] G. Allaire, F. Jouve and H. Maillot, Topology optimization for minimum stress design with the homogenization method. Struct. Multidisc. Optim. 28 (2004) 87-98. | MR | Zbl

[6] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363-393. | MR | Zbl

[7] G. Allaire, F. De Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59-80. | EuDML | MR | Zbl

[8] S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085-1095.

[9] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. 1 (1993) 55-69. | MR | Zbl

[10] R. Ansola, E. Veguería, J. Canales and J.A. Tárrago, A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elements Anal. Des. 44 (2007) 53-62.

[11] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasiticity. Arch. Ration. Mech. Anal. 63 (1977) 337-403. | MR | Zbl

[12] J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. A 88 (1981) 315-328. | MR | Zbl

[13] B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM : COCV 9 (2003) 19-48. | Numdam | MR | Zbl

[14] A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 2. Oxford University Press, Oxford (2002). | MR | Zbl

[15] M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 45 (2006) 1447-1466. | MR | Zbl

[16] A. Chambolle, A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167 (2003) 211-233. | MR | Zbl

[17] Y. Chen, T.A. Davis, W.W. Hager and S. Rajamanickam, Algorithm 887 : CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35 (2009) 22 :1-22 :14. | MR

[18] P.G. Ciarlet, Three-dimensional elasticity. Elsevier Science Publishers B. V. (1988). | MR

[19] A.R. Conn, N.I.M Gould and P.L. Toint, Trust-Region Methods. SIAM (2000). | MR | Zbl

[20] S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization. SIAM J. Control Optim. (to appear). | MR | Zbl

[21] B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, New York (1989). | MR | Zbl

[22] T.A. Davis and W.W. Hager, Dynamic supernodes in sparse Cholesky update/downdate and triangular solves. ACM Trans. Math. Softw. 35 (2009) 27 :1-27 :23. | MR

[23] G.P. Dias, J. Herskovits and F.A. Rochinha, Simultaneous shape optimization and nonlinear analysis of elastic solids, in Computational Mechanics - New Trends and Applications, E. Onate, I. Idelsohn and E. Dvorkin Eds., CIMNE, Barcelona (1998) 1-13.

[24] X. Guo, K. Zhao and M.Y. Wang, Simultaneous shape and topology optimization with implicit topology description functions. Control Cybern. 34 (2005) 255-282. | MR | Zbl

[25] Z. Liu, J.G. Korvink and R. Huang, Structure topology optimization : Fully coupled level set method via femlab. Struct. Multidisc. Optim. 29 (2005) 407-417. | MR | Zbl

[26] J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983). | Zbl

[27] L. Modica and S. Mortola, Un esempio di Γ − -convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285-299. | MR | Zbl

[28] P. Pedregal, Variational Methods in Nonlinear Elasticity. SIAM (2000). | MR | Zbl

[29] J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489-528. | MR | Zbl

[30] O. Sigmund and P.M. Clausen, Topology optimization using a mixed formulation : An alternative way to solve pressure load problems. Comput. Methods Appl. Mech. Eng. 196 (2007) 1874-1889. | MR | Zbl

[31] J. Sikolowski and J.-P. Zolésio, Introduction to shape optimization, in Shape sensitivity analysis, Springer (1992). | Zbl

[32] M.Y. Wang and S. Zhou, Synthesis of shape and topology of multi-material structures with a phase-field method. J. Computer-Aided Mater. Des. 11 (2004) 117-138.

[33] M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192 (2003) 227-246. | MR | Zbl

[34] M.Y. Wang, S. Zhou and H. Ding, Nonlinear diffusions in topology optimization. Struct. Multidisc. Optim. 28 (2004) 262-276. | MR | Zbl

[35] P. Wei and M.Y. Wang, Piecewise constant level set method for structural topology optimization. Int. J. Numer. Methods Eng. 78 (2009) 379-402. | MR | Zbl

[36] Q. Xia and M.Y. Wang, Simultaneous optimization of the material properties and the topology of functionally graded structures. Comput. Aided Des. 40 (2008) 660-675.

[37] S. Zhou and M.Y. Wang, Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89-111. | MR | Zbl

Cité par Sources :