In this paper we analyse an approximate controllability result for a nonlinear population dynamics model. In this model the birth term is nonlocal and describes the recruitment process in newborn individuals population, and the control acts on a small open set of the domain and corresponds to an elimination or a supply of newborn individuals. In our proof we use a unique continuation property for the solution of the heat equation and the Kakutani-Fan-Glicksberg fixed point theorem.
Mots clés : population dynamics, approximate controllability, characteristic lines, heat equation, fixed point theorem
@article{COCV_2011__17_4_1198_0, author = {Kavian, Otared and Traor\'e, Oumar}, title = {Approximate controllability by birth control for a nonlinear population dynamics model}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1198--1213}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010043}, mrnumber = {2859872}, zbl = {1236.93022}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010043/} }
TY - JOUR AU - Kavian, Otared AU - Traoré, Oumar TI - Approximate controllability by birth control for a nonlinear population dynamics model JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 1198 EP - 1213 VL - 17 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010043/ DO - 10.1051/cocv/2010043 LA - en ID - COCV_2011__17_4_1198_0 ER -
%0 Journal Article %A Kavian, Otared %A Traoré, Oumar %T Approximate controllability by birth control for a nonlinear population dynamics model %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 1198-1213 %V 17 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010043/ %R 10.1051/cocv/2010043 %G en %F COCV_2011__17_4_1198_0
Kavian, Otared; Traoré, Oumar. Approximate controllability by birth control for a nonlinear population dynamics model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1198-1213. doi : 10.1051/cocv/2010043. http://www.numdam.org/articles/10.1051/cocv/2010043/
[1] Sur un problème de contrôle d'une population structurée en âge et en espace. C. R. Acad. Sci. Paris Série I 323 (1996) 269-274. | MR | Zbl
and ,[2] Analysis and control of age-dependent population dynamics . Kluwer Academic Publishers (2000). | MR | Zbl
,[3] L'analyse non linéaire et ses motivations économiques . Masson, Paris (1984). | MR | Zbl
,[4] V. Barbu, M. Ianneli and M Martcheva, On the controllability of the Lotka-McKendrick model of population dynamics. J. Math. Anal. Appl. 253 (2001) 142-165. | MR | Zbl
[5] Unique continuation principle for systems of parabolic equations. ESAIM: COCV 16 (2010) 247-274. | Numdam | MR | Zbl
and ,[6] A nonlinear problem in age-dependent population diffusion. SIAM J. Math. Anal. 16 (1985) 510-529. | MR | Zbl
,[7] A uniqueness theorem for parabolic equation. Com. Pure Appl. Math. XLII (1990) 123-136. | MR | Zbl
,[8] Sur un problème de dynamique des populations. IMHOTEP J. Afr. Math. Pures Appl. 4 (2003) 15-23. | MR | Zbl
and ,[9] Optimal control for a nonlinear population dynamics problem. Port. Math. (N.S.) 62 (2005) 217-229. | MR | Zbl
and ,[10] Approximate controllability and application to data assimilation problem for a linear population dynamics model. IAENG Int. J. Appl. Math. 37 (2007) 1-12. | MR | Zbl
,[11] Nonlinear functional analysis and its applications, Applications to Mathematical Physics IV. Springer-Verlag, New York (1988). | MR | Zbl
,[12] Finite dimensional null controllability of the semilinear heat equation. J. Math. Pures Appl. 76 (1997) 237-264. | MR | Zbl
,Cité par Sources :