Let be a minimum for
Mots-clés : Hölder, regularity, Lipschitz
@article{COCV_2011__17_4_1133_0, author = {Mariconda, Carlo and Treu, Giulia}, title = {A {Haar-Rado} type theorem for minimizers in {Sobolev} spaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1133--1143}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010038}, mrnumber = {2859868}, zbl = {1239.49031}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010038/} }
TY - JOUR AU - Mariconda, Carlo AU - Treu, Giulia TI - A Haar-Rado type theorem for minimizers in Sobolev spaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 1133 EP - 1143 VL - 17 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010038/ DO - 10.1051/cocv/2010038 LA - en ID - COCV_2011__17_4_1133_0 ER -
%0 Journal Article %A Mariconda, Carlo %A Treu, Giulia %T A Haar-Rado type theorem for minimizers in Sobolev spaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 1133-1143 %V 17 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010038/ %R 10.1051/cocv/2010038 %G en %F COCV_2011__17_4_1133_0
Mariconda, Carlo; Treu, Giulia. A Haar-Rado type theorem for minimizers in Sobolev spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1133-1143. doi : 10.1051/cocv/2010038. http://www.numdam.org/articles/10.1051/cocv/2010038/
[1] Analyse fonctionnelle : théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], Masson, Paris (1983). | MR | Zbl
,[2] Équivalence de deux inéquations variationnelles et applications. Arch. Rational Mech. Anal. 41 (1971) 254-265. | MR | Zbl
and ,[3] On the bounded slope condition and the validity of the Euler Lagrange equation. SIAM J. Control Optim. 40 (2002) 1270-1279. | MR | Zbl
,[4] Comparison results and estimates on the gradient without strict convexity. SIAM J. Control Optim. 46 (2007) 738-749. | MR
,[5] Continuity of solutions to a basic problem in the calculus of variations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (2005) 511-530. | Numdam | MR | Zbl
,[6] Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press, Boca Raton (1992). | MR | Zbl
and ,[7] An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)] 2. Edizioni della Normale, Pisa (2005). | MR | Zbl
and ,[8] On the bounded slope condition. Pacific J. Math. 18 (1966) 495-511. | MR | Zbl
,[9] On some non-linear elliptic differential-functional equations. Acta Math. 115 (1966) 271-310. | MR | Zbl
and ,[10] Lipschitz regularity for minima without strict convexity of the Lagrangian. J. Differ. Equ. 243 (2007) 388-413. | MR | Zbl
and ,[11] Local Lipschitz regularity of minima for a scalar problem of the calculus of variations. Commun. Contemp. Math. 10 (2008) 1129-1149. | MR | Zbl
and ,[12] Hölder regularity for a classical problem of the calculus of variations. Adv. Calc. Var. 2 (2009) 311-320. | MR | Zbl
and ,[13] Un teorema di esistenza e unicità per il problema dell'area minima in n variabili. Ann. Scuola Norm. Sup. Pisa 19 (1965) 233-249. | Numdam | MR | Zbl
,[14] On the equivalence of two variational problems. Calc. Var. Partial Differential Equations 11 (2000) 307-319. | MR | Zbl
and ,Cité par Sources :