Estimate of the pressure when its gradient is the divergence of a measure. Applications
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1066-1087.

In this paper, a W -1,N ' estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on N , or on a regular bounded open set of  N . The proof is based partially on the Strauss inequality [Strauss, Partial Differential Equations: Proc. Symp. Pure Math. 23 (1973) 207-214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur. Math. Soc. 9 (2007) 277-315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions which read as the divergence of a measure, and to prove an existence result for the stationary Navier-Stokes equation when the viscosity tensor is only in L1.

DOI : 10.1051/cocv/2010037
Classification : 35Q30, 35Q35, 35A08
Mots-clés : pressure, Navier-Stokes equation, div-curl, measure data, fundamental solution
@article{COCV_2011__17_4_1066_0,
     author = {Briane, Marc and Casado-D{\'\i}az, Juan},
     title = {Estimate of the pressure when its gradient is the divergence of a measure. {Applications}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1066--1087},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {4},
     year = {2011},
     doi = {10.1051/cocv/2010037},
     mrnumber = {2859865},
     zbl = {1232.35113},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2010037/}
}
TY  - JOUR
AU  - Briane, Marc
AU  - Casado-Díaz, Juan
TI  - Estimate of the pressure when its gradient is the divergence of a measure. Applications
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 1066
EP  - 1087
VL  - 17
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2010037/
DO  - 10.1051/cocv/2010037
LA  - en
ID  - COCV_2011__17_4_1066_0
ER  - 
%0 Journal Article
%A Briane, Marc
%A Casado-Díaz, Juan
%T Estimate of the pressure when its gradient is the divergence of a measure. Applications
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 1066-1087
%V 17
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2010037/
%R 10.1051/cocv/2010037
%G en
%F COCV_2011__17_4_1066_0
Briane, Marc; Casado-Díaz, Juan. Estimate of the pressure when its gradient is the divergence of a measure. Applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1066-1087. doi : 10.1051/cocv/2010037. http://www.numdam.org/articles/10.1051/cocv/2010037/

[1] C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44 (1994) 109-140. | MR | Zbl

[2] M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1998) 407-436. | Numdam | MR | Zbl

[3] M.E. Bogovski, Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979) 1094-1098. | MR | Zbl

[4] J. Bourgain and H. Brezis, New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. 9 (2007) 277-315. | MR | Zbl

[5] H. Brezis, Analyse Fonctionnelle, Théorie et Applications. Mathématiques Appliquées pour la Maîtrise, Masson, Paris (1983). | MR | Zbl

[6] H. Brezis and J. Van Schaftingen, Boundary estimates for elliptic systems with L1-data. Calc. Var. 30 (2007) 369-388. | MR | Zbl

[7] M. Briane, Homogenization of the Stokes equations with high-contrast viscosity. J. Math. Pures Appl. 82 (2003) 843-876. | MR | Zbl

[8] M. Briane and J. Casado Díaz, Compactness of sequences of two-dimensional energies with a zero-order term. Application to three-dimensional nonlocal effects. Calc. Var. 33 (2008) 463-492. | MR | Zbl

[9] M. Camar-Eddine and P. Seppecher, Determination of the closure of the set of elasticity functionals. Arch. Rat. Mech. Anal. 170 (2003) 211-245. | MR | Zbl

[10] G. De Rham, Variétés différentiables, Formes, courants, formes harmoniques. Hermann, Paris (1973). | Zbl

[11] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001). | MR | Zbl

[12] E. Hopf, Über die Anfwangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1951) 213-231. | MR | Zbl

[13] E.Y. Khruslov, Homogenized models of composite media, in Composite Media and Homogenization Theory, G. Dal Maso and G.F. Dell'Antonio Eds., Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser (1991) 159-182. | MR | Zbl

[14] O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mathematics and its Applications 2. Gordon and Breach, Science Publishers, New York-London-Paris (1969). | MR | Zbl

[15] J.-L. Lions, Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires. Bull. S.M.F. 87 (1959) 245-273. | Numdam | MR | Zbl

[16] V.A. Marchenko and E.Y. Khruslov, Homogenization of partial differential equations, Progress in Mathematical Physics 46. Birkhäuser, Boston (2006). | MR | Zbl

[17] J. Nečas, Équations aux dérivées partielles. Presses de l'Université de Montréal (1965). | Zbl

[18] C. Pideri and P. Seppecher, A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech. Thermodyn. 9 (1997) 241-257. | MR | Zbl

[19] M.-J. Strauss, Variations of Korn's and Sobolev's inequalities, in Partial Differential Equations: Proc. Symp. Pure Math. 23, D. Spencer Ed., Am. Math. Soc., Providence (1973) 207-214. | MR | Zbl

[20] L. Tartar, Topics in nonlinear analysis. Publications Mathématiques d'Orsay 78 (1978) 271. | MR | Zbl

[21] R. Temam, Navier-Stokes Equations - Theory and Numerical Analysis, Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984). | Zbl

[22] J. Van Schaftingen, Estimates for L1-vector fields under higher-order differential conditions. J. Eur. Math. Soc. 10 (2008) 867-882. | MR | Zbl

[23] J. Van Schaftingen, Estimates for L1-vector fields. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 181-186. | MR | Zbl

Cité par Sources :