In this paper, a estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on , or on a regular bounded open set of . The proof is based partially on the Strauss inequality [Strauss, Partial Differential Equations: Proc. Symp. Pure Math. 23 (1973) 207-214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur. Math. Soc. 9 (2007) 277-315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions which read as the divergence of a measure, and to prove an existence result for the stationary Navier-Stokes equation when the viscosity tensor is only in L1.
Mots clés : pressure, Navier-Stokes equation, div-curl, measure data, fundamental solution
@article{COCV_2011__17_4_1066_0, author = {Briane, Marc and Casado-D{\'\i}az, Juan}, title = {Estimate of the pressure when its gradient is the divergence of a measure. {Applications}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1066--1087}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010037}, mrnumber = {2859865}, zbl = {1232.35113}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010037/} }
TY - JOUR AU - Briane, Marc AU - Casado-Díaz, Juan TI - Estimate of the pressure when its gradient is the divergence of a measure. Applications JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 1066 EP - 1087 VL - 17 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010037/ DO - 10.1051/cocv/2010037 LA - en ID - COCV_2011__17_4_1066_0 ER -
%0 Journal Article %A Briane, Marc %A Casado-Díaz, Juan %T Estimate of the pressure when its gradient is the divergence of a measure. Applications %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 1066-1087 %V 17 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010037/ %R 10.1051/cocv/2010037 %G en %F COCV_2011__17_4_1066_0
Briane, Marc; Casado-Díaz, Juan. Estimate of the pressure when its gradient is the divergence of a measure. Applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1066-1087. doi : 10.1051/cocv/2010037. http://www.numdam.org/articles/10.1051/cocv/2010037/
[1] Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44 (1994) 109-140. | MR | Zbl
and ,[2] Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1998) 407-436. | Numdam | MR | Zbl
and ,[3] Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979) 1094-1098. | MR | Zbl
,[4] New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. 9 (2007) 277-315. | MR | Zbl
and ,[5] Analyse Fonctionnelle, Théorie et Applications. Mathématiques Appliquées pour la Maîtrise, Masson, Paris (1983). | MR | Zbl
,[6] Boundary estimates for elliptic systems with L1-data. Calc. Var. 30 (2007) 369-388. | MR | Zbl
and ,[7] Homogenization of the Stokes equations with high-contrast viscosity. J. Math. Pures Appl. 82 (2003) 843-876. | MR | Zbl
,[8] Compactness of sequences of two-dimensional energies with a zero-order term. Application to three-dimensional nonlocal effects. Calc. Var. 33 (2008) 463-492. | MR | Zbl
and ,[9] Determination of the closure of the set of elasticity functionals. Arch. Rat. Mech. Anal. 170 (2003) 211-245. | MR | Zbl
and ,[10] Variétés différentiables, Formes, courants, formes harmoniques. Hermann, Paris (1973). | Zbl
,[11] Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001). | MR | Zbl
and ,[12] Über die Anfwangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1951) 213-231. | MR | Zbl
,[13] Homogenized models of composite media, in Composite Media and Homogenization Theory, G. Dal Maso and G.F. Dell'Antonio Eds., Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser (1991) 159-182. | MR | Zbl
,[14] The mathematical theory of viscous incompressible flow, Mathematics and its Applications 2. Gordon and Breach, Science Publishers, New York-London-Paris (1969). | MR | Zbl
,[15] Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires. Bull. S.M.F. 87 (1959) 245-273. | Numdam | MR | Zbl
,[16] Homogenization of partial differential equations, Progress in Mathematical Physics 46. Birkhäuser, Boston (2006). | MR | Zbl
and ,[17] Équations aux dérivées partielles. Presses de l'Université de Montréal (1965). | Zbl
,[18] A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech. Thermodyn. 9 (1997) 241-257. | MR | Zbl
and ,[19] Variations of Korn's and Sobolev's inequalities, in Partial Differential Equations: Proc. Symp. Pure Math. 23, D. Spencer Ed., Am. Math. Soc., Providence (1973) 207-214. | MR | Zbl
,[20] Topics in nonlinear analysis. Publications Mathématiques d'Orsay 78 (1978) 271. | MR | Zbl
,[21] Navier-Stokes Equations - Theory and Numerical Analysis, Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984). | Zbl
,[22] Estimates for L1-vector fields under higher-order differential conditions. J. Eur. Math. Soc. 10 (2008) 867-882. | MR | Zbl
,[23] Estimates for L1-vector fields. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 181-186. | MR | Zbl
,Cité par Sources :