Optimality conditions for semilinear parabolic equations with controls in leading term
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 975-994.

An optimal control problem for semilinear parabolic partial differential equations is considered. The control variable appears in the leading term of the equation. Necessary conditions for optimal controls are established by the method of homogenizing spike variation. Results for problems with state constraints are also stated.

DOI : 10.1051/cocv/2010034
Classification : 49K20, 35B27
Mots clés : optimal control, necessary conditions, parabolic equation, homogenized spike variation
@article{COCV_2011__17_4_975_0,
     author = {Lou, Hongwei},
     title = {Optimality conditions for semilinear parabolic equations with controls in leading term},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {975--994},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {4},
     year = {2011},
     doi = {10.1051/cocv/2010034},
     mrnumber = {2859861},
     zbl = {1238.49033},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2010034/}
}
TY  - JOUR
AU  - Lou, Hongwei
TI  - Optimality conditions for semilinear parabolic equations with controls in leading term
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 975
EP  - 994
VL  - 17
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2010034/
DO  - 10.1051/cocv/2010034
LA  - en
ID  - COCV_2011__17_4_975_0
ER  - 
%0 Journal Article
%A Lou, Hongwei
%T Optimality conditions for semilinear parabolic equations with controls in leading term
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 975-994
%V 17
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2010034/
%R 10.1051/cocv/2010034
%G en
%F COCV_2011__17_4_975_0
Lou, Hongwei. Optimality conditions for semilinear parabolic equations with controls in leading term. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 975-994. doi : 10.1051/cocv/2010034. http://www.numdam.org/articles/10.1051/cocv/2010034/

[1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | MR | Zbl

[2] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland Company, Amsterdam (1978). | MR | Zbl

[3] C. Calvo-Jurado and J. Casado-Diaz, Homogenization of Dirichlet parabolic problems for coefficients and open sets simultaneously variable and applications to optimal design. J. Comput. Appl. Math. 192 (2006) 20-29. | MR | Zbl

[4] J. Casado-Diaz, J. Couce-Calvo and J.D. Martin-Gómez, Optimality conditions for nonconvex multistate control problems in the coefficients. SIAM J. Control Optim. 43 (2004) 216-239. | MR | Zbl

[5] E. Casas, Optimal Control in coefficients of elliptic equations with state constraints. Appl. Math. Optim. 26 (1992) 21-37. | MR | Zbl

[6] I. Ciuperca, M. El Alaoui Talibi and M. Jai, On the optimal control of coefficients in elliptic problems, Application to the optimization of the head slider. ESAIM: COCV 11 (2005) 102-121. | Numdam | MR | Zbl

[7] H. Gao and X. Li, Necessary conditions for optimal control of elliptic systems. J. Australian Math. Soc. Ser. B 41 (2000) 542-567. | MR | Zbl

[8] A. Holmbom, Homogenization of parabolic equations an alternative approach and some corrector-type results. Appl. Math. 42 (1997) 321-343. | MR | Zbl

[9] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural'Ceva, Linear and Quasi-linear Equations of Parabolic Type, Transl. Math. Monographs 23. American Mathematical Society, Providence (1968). | MR | Zbl

[10] X. Li, and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995). | MR | Zbl

[11] H. Lou and J. Yong, Optimality Conditions for Semilinear Elliptic Equations with Leading Term Containing Controls. SIAM J. Control Optim. 48 (2009) 2366-2387. | MR | Zbl

[12] F. Murat and L. Tartar, Calculus of variations and homogenization, in Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Diffrential Equations and their Applications 31, L. Cherkaev and R.V. Kohn Eds., Birkaüser, Boston (1998) 139-174. | MR | Zbl

[13] U. Raitums and W.H. Schmidt, On necessary optimal conditions for optimal control problems governed by elliptic systems. Optimization 54 (2005) 149-160. | MR | Zbl

[14] S.Y. Serovajsky, Sequential extension in the problem of control in coefficients for elliptic-type equations. J. Inverse Ill-Posed Probl. 11 (2003) 523-536. | MR | Zbl

[15] R.K. Tagiyev, Optimal control by the coefficients of a parabolic equation. Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math. Mech. 24 (2004) 247-256. | MR | Zbl

[16] L. Tartar, Estimations fines de coefficients homogénéisés, Ennio de Giorgi Colloquium, in Pitman Research Notes in Mathematics 125, P. Krée Ed., Pitman, London (1985) 168-187. | MR | Zbl

Cité par Sources :