This paper deals with a model describing damage processes in a (nonlinear) elastic body which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we detail the derivation of the model written in terms of a PDE system, combined with suitable initial and boundary conditions. Some internal constraints on the variables are introduced in the equations and on the boundary, to get physical consistency. We prove the existence of global in time solutions (to a suitable variational formulation) of the related Cauchy problem by means of a Schauder fixed point argument, combined with monotonicity and compactness tools. We also perform an asymptotic analysis of the solutions as the interfacial damage energy (between the body and the contact surface) goes to +∞.
Mots clés : damage, contact, adhesion, existence, asymptotic analysis
@article{COCV_2011__17_4_955_0, author = {Bonetti, Elena and Fr\'emond, Michel}, title = {Analytical results on a model for damaging in domains and interfaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {955--974}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010033}, mrnumber = {2859860}, zbl = {1230.35034}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010033/} }
TY - JOUR AU - Bonetti, Elena AU - Frémond, Michel TI - Analytical results on a model for damaging in domains and interfaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 955 EP - 974 VL - 17 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010033/ DO - 10.1051/cocv/2010033 LA - en ID - COCV_2011__17_4_955_0 ER -
%0 Journal Article %A Bonetti, Elena %A Frémond, Michel %T Analytical results on a model for damaging in domains and interfaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 955-974 %V 17 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010033/ %R 10.1051/cocv/2010033 %G en %F COCV_2011__17_4_955_0
Bonetti, Elena; Frémond, Michel. Analytical results on a model for damaging in domains and interfaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 955-974. doi : 10.1051/cocv/2010033. http://www.numdam.org/articles/10.1051/cocv/2010033/
[1] Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976). | MR | Zbl
,[2] Well-posedness results for a model of damage in thermoviscoelastic materials. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (2008) 1187-1208. | Numdam | MR | Zbl
and ,[3] Collisions and fracture, a 1-D example: How to tear off a chandelier from the ceiling. J. Elast. 74 (2004) 47-66. | MR | Zbl
and ,[4] Local existence for Frémond's model of damage in elastic materials. Contin. Mech. Thermodyn. 16 (2004) 319-335. | MR | Zbl
and ,[5] On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Diff. Equ. 218 (2005) 91-116. | MR | Zbl
, and ,[6] Well-posedness and long-time behaviour for a model of contact with adhesion. Indiana Univ. Math. J. 56 (2007) 2787-2819. | MR | Zbl
, and ,[7] Global existence for a contact problem with adhesion. Math. Meth. Appl. Sci. 31 (2008) 1029-1064. | MR | Zbl
, and ,[8] Thermal effects in adhesive contact: modelling and analysis. Nonlinearity 22 (2009) 2697-2731. | MR | Zbl
, and ,[9] Global existence for a class of generalized systems for irreversible phase changes. NoDEA Nonlinear Diff. Equ. Appl. 9 (2002) 255-276. | MR | Zbl
, , and ,[10] Damage in domains and interfaces: a coupled predictive theory. J. Mech. Mater. Struct. 7 (2006) 1205-1233.
and ,[11] Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris 295 (1982) 913-916. | MR | Zbl
,[12] Adhérence des solides. J. Méc. Théor. Appl. 6 (1987) 383-407. | Zbl
,[13] Non-smooth Thermomechanics. Springer-Verlag, Berlin (2002). | MR | Zbl
,[14] Collisions. Edizioni del Dipartimento di Ingegneria Civile dell' Università di Roma Tor Vergata, Italy (2007).
,[15] Damage problems for viscous locking materials. Adv. Math. Sci. Appl. 16 (2006) 697-716. | MR | Zbl
and ,[16] Damage, gradient of damage and priciple of virtual power. Int. J. Solids Struct. 33 (1996) 1083-1103. | MR | Zbl
and ,[17] Existence and uniqueness of solutions for a dynamic one-dimensional damage model. J. Math. Anal. Appl. 229 (1999) 271-294. | MR | Zbl
, and ,[18] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969). | MR | Zbl
,[19] Sur les lois de frottement, de viscosité et plasticité. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 271 (1970) 608-611.
,[20] Unilateral contact with adherence. Math. Meth. Appl. Sci. 10 (1998) 367-381. | MR | Zbl
,[21] Compact sets in the space Lp(0,T; B). Ann. Mat. Pura Appl. 146 (1987) 65-96. | MR | Zbl
,Cité par Sources :