In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness of a solution for the discrete equation is an open problem.
Mots clés : quasilinear elliptic equations, optimal control problems, finite element approximations, convergence of discretized controls
@article{COCV_2011__17_3_771_0, author = {Casas, Eduardo and Tr\"oltzsch, Fredi}, title = {Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {771--800}, publisher = {EDP-Sciences}, volume = {17}, number = {3}, year = {2011}, doi = {10.1051/cocv/2010025}, mrnumber = {2826980}, zbl = {1228.49033}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010025/} }
TY - JOUR AU - Casas, Eduardo AU - Tröltzsch, Fredi TI - Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 771 EP - 800 VL - 17 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010025/ DO - 10.1051/cocv/2010025 LA - en ID - COCV_2011__17_3_771_0 ER -
%0 Journal Article %A Casas, Eduardo %A Tröltzsch, Fredi %T Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 771-800 %V 17 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010025/ %R 10.1051/cocv/2010025 %G en %F COCV_2011__17_3_771_0
Casas, Eduardo; Tröltzsch, Fredi. Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 771-800. doi : 10.1051/cocv/2010025. http://www.numdam.org/articles/10.1051/cocv/2010025/
[1] Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201-229. | MR | Zbl
, and ,[2] The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York-Berlin-Heidelberg (1984). | Zbl
and ,[3] Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data. (Submitted). | Zbl
and ,[4] Uniform convergence of the FEM. Applications to state constrained control problems. Comp. Appl. Math. 21 (2007) 67-100. | MR | Zbl
and ,[5] Optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48 (2009) 688-718. | MR | Zbl
and ,[6] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[7] A Galerkin method for a nonlinear Dirichlet problem. Math. Comp. 29 (1975) 689-696. | MR | Zbl
and ,[8] A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl. 30 (2005) 45-61. | MR | Zbl
,[9] Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. J. Math. Anal. Appl. 212 (1997) 452-466. | MR | Zbl
,[10] On Galerkin approximations of quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994) 168-189. | MR | Zbl
, and ,[11] Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type. Appl. Math. 41 (1996) 467-478. | EuDML | MR | Zbl
, and ,[12] Some optimal error estimates for piecewise finite element approximations. Math. Comp. 38 (1982) 437-445. | MR | Zbl
and ,[13] Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles. Masson, Paris (1983). | MR | Zbl
and ,Cité par Sources :