We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.
Mots-clés : ∞-laplacian, Neumann boundary condition, principal eigenvalue, viscosity solutions
@article{COCV_2011__17_2_575_0, author = {Patrizi, Stefania}, title = {The principal eigenvalue of the $\infty $-laplacian with the {Neumann} boundary condition}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {575--601}, publisher = {EDP-Sciences}, volume = {17}, number = {2}, year = {2011}, doi = {10.1051/cocv/2010019}, mrnumber = {2801332}, zbl = {1219.35074}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010019/} }
TY - JOUR AU - Patrizi, Stefania TI - The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 575 EP - 601 VL - 17 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010019/ DO - 10.1051/cocv/2010019 LA - en ID - COCV_2011__17_2_575_0 ER -
%0 Journal Article %A Patrizi, Stefania %T The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 575-601 %V 17 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010019/ %R 10.1051/cocv/2010019 %G en %F COCV_2011__17_2_575_0
Patrizi, Stefania. The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 575-601. doi : 10.1051/cocv/2010019. http://www.numdam.org/articles/10.1051/cocv/2010019/
[1] Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 752-728. | MR | Zbl
,[2] A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. (N.S.) 41 (2004) 439-505. | MR | Zbl
, and ,[3] The principal eigenvalue and maximum principle for second order elliptic operators in general domain. Comm. Pure Appl. Math. 47 (1994) 47-92. | MR | Zbl
, and ,[4] Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators. Comm. Pure Appl. Anal. 6 (2007) 335-366. | MR | Zbl
and ,[5] Nonlinear eigenvalues and bifurcation problems for Pucci's operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 187-206. | Numdam | MR | Zbl
, , ,[6] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67. | MR | Zbl
, and ,[7] Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137. American Mathematical Society (1999). | MR | Zbl
and ,[8] Steklov eigenvalues for the ∞-Laplacian. Rend. Lincei Mat. Appl. 17 (2006) 199-210. | MR | Zbl
, , and ,[9] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Diff. Equ. 83 (1990) 26-78. | MR | Zbl
and ,[10] Demi-eigenvalues for uniformly elliptic Isaacs operators. Preprint.
and ,[11] Principal eigenvalue of a very badly degenerate operator and applications. J. Diff. Equ. 236 (2007) 532-550. | MR | Zbl
,[12] On the evolution governed by the infinity Laplacian. Math. Ann. 335 (2006) 819-851. | MR | Zbl
and ,[13] The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148 (1999) 89-105. | MR | Zbl
, and ,[14] On a nonlinear eigenvalue problem. Report 68, Univ. Jyväskylä, Jyväskylä (1995) 33-54. | MR | Zbl
,[15] Bifurcation and optimal stochastic control. Nonlinear Anal. 7 (1983) 177-207. | MR
,[16] The Neumann problem for singular fully nonlinear operators. J. Math. Pures Appl. 90 (2008) 286-311. | MR | Zbl
,[17] Principal eigenvalues for Isaacs operators with Neumann boundary conditions. NoDEA 16 (2009) 79-107. | MR | Zbl
,[18] Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22 (2009) 167-210. | MR | Zbl
, , and ,[19] Existence of positive solutions to a “semilinear” equation involving the Pucci's operators in a convex domain. Diff. Integral Equations 17 (2004) 481-494. | Zbl
,[20] Principal eigenvalues and the Dirichlet problem for fully nonlinear operators. Adv. Math. 218 (2008) 105-135. | MR | Zbl
and ,Cité par Sources :