We prove that any Kantorovich potential for the cost function c = d2/2 on a Riemannian manifold (M, g) is locally semiconvex in the “region of interest”, without any compactness assumption on M, nor any assumption on its curvature. Such a region of interest is of full μ-measure as soon as the starting measure μ does not charge n - 1-dimensional rectifiable sets.
Mots clés : Kantorovich potential, optimal transport, regularity
@article{COCV_2011__17_3_648_0, author = {Figalli, Alessio and Gigli, Nicola}, title = {Local semiconvexity of {Kantorovich} potentials on non-compact manifolds}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {648--653}, publisher = {EDP-Sciences}, volume = {17}, number = {3}, year = {2011}, doi = {10.1051/cocv/2010011}, mrnumber = {2826973}, zbl = {1228.49047}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010011/} }
TY - JOUR AU - Figalli, Alessio AU - Gigli, Nicola TI - Local semiconvexity of Kantorovich potentials on non-compact manifolds JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 648 EP - 653 VL - 17 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010011/ DO - 10.1051/cocv/2010011 LA - en ID - COCV_2011__17_3_648_0 ER -
%0 Journal Article %A Figalli, Alessio %A Gigli, Nicola %T Local semiconvexity of Kantorovich potentials on non-compact manifolds %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 648-653 %V 17 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010011/ %R 10.1051/cocv/2010011 %G en %F COCV_2011__17_3_648_0
Figalli, Alessio; Gigli, Nicola. Local semiconvexity of Kantorovich potentials on non-compact manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 648-653. doi : 10.1051/cocv/2010011. http://www.numdam.org/articles/10.1051/cocv/2010011/
[1] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl
, and ,[2] Gradient flows in metric spaces and in spaces of probability measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005). | MR | Zbl
, and ,[3] A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146 (2001) 219-257. | MR | Zbl
, and ,[4] Optimal transportation on non-compact manifolds. Israel J. Math. (to appear). | MR | Zbl
and ,[5] Existence, uniqueness, and regularity of optimal transport maps. SIAM J. Math. Anal. 39 (2007) 126-137. | MR | Zbl
,[6] The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. | MR | Zbl
and ,[7] Second order analysis on . Memoirs of the AMS (to appear), available at http://cvgmt.sns.it/cgi/get.cgi/papers/gig09/. | Zbl
,[8] Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589-608. | MR | Zbl
,[9] Optimal transport, old and new, Grundlehren des mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer-Verlag, Berlin-New York (2009). | MR | Zbl
,Cité par Sources :