We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration problem with convex and polyconvex regularization terms.
Mots clés : quasiconvex functions with infinite values, lower semicontinuous quasiconvex envelope, multidimensional control problem, relaxation, existence of global minimizers, image registration, polyconvex regularization
@article{COCV_2011__17_1_190_0, author = {Wagner, Marcus}, title = {Quasiconvex relaxation of multidimensional control problems with integrands $f(t,\xi ,v)$}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {190--221}, publisher = {EDP-Sciences}, volume = {17}, number = {1}, year = {2011}, doi = {10.1051/cocv/2010008}, zbl = {1217.49007}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010008/} }
TY - JOUR AU - Wagner, Marcus TI - Quasiconvex relaxation of multidimensional control problems with integrands $f(t,\xi ,v)$ JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 190 EP - 221 VL - 17 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010008/ DO - 10.1051/cocv/2010008 LA - en ID - COCV_2011__17_1_190_0 ER -
%0 Journal Article %A Wagner, Marcus %T Quasiconvex relaxation of multidimensional control problems with integrands $f(t,\xi ,v)$ %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 190-221 %V 17 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010008/ %R 10.1051/cocv/2010008 %G en %F COCV_2011__17_1_190_0
Wagner, Marcus. Quasiconvex relaxation of multidimensional control problems with integrands $f(t,\xi ,v)$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 190-221. doi : 10.1051/cocv/2010008. http://www.numdam.org/articles/10.1051/cocv/2010008/
[1] Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1984) 125-145. | MR | Zbl
and ,[2] Reliable estimation of dense optical flow fields with large displacements. Int. J. Computer Vision 39 (2000) 41-56. | Zbl
, and ,[3] Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Second edn., Springer, New York etc. (2006). | MR | Zbl
and ,[4] W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | MR | Zbl
and ,[5] Éléments de Mathématique, Livre VI : Intégration, Chapitres I-IV. Hermann, Paris, France (1952). | Zbl
,[6] Pontryagin's principle for control problems in age-dependent population dynamics. J. Math. Biology 23 (1985) 75-101. | MR | Zbl
,[7] An Introduction to Convex Polytopes. Springer, New York-Heidelberg-Berlin (1983). | MR | Zbl
,[8] Detection of intensity and motion edges within optical flow via multidimensional control. SIAM J. Imaging Sci. 2 (2009) 1190-1210. | MR | Zbl
, and ,[9] Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Mathematics 207. Longman, Harlow (1989). | MR | Zbl
,[10] Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90 (2008) 15-30. | MR | Zbl
,[11] Introduction to the Calculus of Variations. Imperial College Press, London, UK (2004) | MR | Zbl
,[12] Direct Methods in the Calculus of Variations. Second edn., Springer, New York etc. (2008). | MR | Zbl
,[13] General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1-37. | MR | Zbl
and ,[14] A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64 (2004) 668-687. | MR | Zbl
and ,[15] Linear Operators. Part I: General Theory. Wiley-Interscience, New York etc. (1988). | MR | Zbl
and ,[16] Convex Analysis and Variational Problems. Second edn., SIAM, Philadelphia, USA (1999). | MR | Zbl
and ,[17] Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton etc. (1992). | MR | Zbl
and ,[18] Optimality conditions for age-structured control systems. J. Math. Anal. Appl. 288 (2003) 47-68. | MR | Zbl
, and ,[19] Image restoration and simultaneous edge detection by optimal control methods. BTU Cottbus, Preprint-Reihe Mathematik, Preprint Nr. M-05/2008. Optim. Contr. Appl. Meth. (submitted).
, , and ,[20] Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys. Res. Lett. 30 (2003) 1658.
and ,[21] Intensity gradient based registration and fusion of multi-modal images. Methods Inf. Med. 46 (2007) 292-299.
and ,[22] A multigrid approach for minimizing a nonlinear functional for digital image matching. Computing 64 (2000) 339-348. | MR | Zbl
and ,[23] Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput. 23 (2001) 1077-1093. | MR | Zbl
and ,[24] Variational methods for multimodal image matching. Int. J. Computer Vision 50 (2002) 329-343. | Zbl
, and ,[25] Analysis of optical flow models in the framework of the calculus of variations. Num. Funct. Anal. Optim. 23 (2002) 69-89. | MR | Zbl
, , and ,[26] Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991) 329-365. | MR | Zbl
and ,[27] Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4 (1980) 241-257. | MR | Zbl
and ,[28] Numerical Methods for Image Registration. Oxford University Press, Oxford, UK (2004). | MR | Zbl
,[29] Multiple Integrals in the Calculus of Variations, Grundlehren 130. Springer, Berlin-Heidelberg-New York (1966). | MR | Zbl
,[30] Critical points in relaxed deposit problems, in Calculus of Variations and Optimal Control, Technion 98, Vol. II, A. Ioffe, S. Reich and I. Shafrir Eds., Research Notes in Mathematics 411, Chapman & Hall/CRC Press, Boca Raton etc. (2000) 217-236. | MR | Zbl
and ,[31] Relaxation in Optimization Theory and Variational Calculus. De Gruyter, Berlin-New York (1997). | Zbl
,[32] Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, UK (1993). | MR | Zbl
,[33] Elastic-plastic torsion of convex cylindrical bars. J. Math. Mech. 19 (1969) 531-551. | MR | Zbl
,[34] Elastic-plastic torsion problem III. Arch. Rat. Mech. Anal. 34 (1969) 228-244. | MR | Zbl
,[35] Erweiterungen des mehrdimensionalen Pontrjaginschen Maximumprinzips auf meßbare und beschränkte sowie distributionelle Steuerungen. Ph.D. Thesis, University of Leipzig, Germany (1996).
,[36] Mehrdimensionale Steuerungsprobleme mit quasikonvexen Integranden. Habilitation Thesis, BTU Cottbus, Germany (2006).
,[37] Nonconvex relaxation properties of multidimensional control problems, in Recent Advances in Optimization, A. Seeger Ed., Lecture Notes in Economics and Mathematical Systems 563, Springer, Berlin etc. (2006) 233-250. | MR | Zbl
,[38] Quasiconvex relaxation of multidimensional control problems. Adv. Math. Sci. Appl. 18 (2008) 305-327. | MR | Zbl
,[39] Jensen's inequality for the lower semicontinuous quasiconvex envelope and relaxation of multidimensional control problems. J. Math. Anal. Appl. 355 (2009) 606-619. | MR | Zbl
,[40] On the lower semicontinuous quasiconvex envelope for unbounded integrands (I). ESAIM: COCV 15 (2009) 68-101. | Numdam | MR | Zbl
,[41] On the lower semicontinuous quasiconvex envelope for unbounded integrands (II): Representation by generalized controls. J. Convex Anal. 16 (2009) 441-472. | MR | Zbl
,[42] Pontryagin's maximum principle for multidimensional control problems in image processing. J. Optim. Theory Appl. 140 (2009) 543-576. | MR | Zbl
,[43] Elastic/hyperelastic image registration unter Nebenbedingungen als mehrdimensionales Steuerungsproblem. Preprint-Reihe Mathematik, Preprint Nr. M-09/2009, BTU Cottbus, Germany (2009). | MR
,Cité par Sources :