We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV 14 (2008) 494-516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz, J. Mech. Phys. Solids 56 (2008) 1885-1904.].
Mots-clés : variational principle, gradient flow, convergence
@article{COCV_2011__17_1_52_0, author = {Mielke, Alexander and Stefanelli, Ulisse}, title = {Weighted energy-dissipation functionals for gradient flows}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {52--85}, publisher = {EDP-Sciences}, volume = {17}, number = {1}, year = {2011}, doi = {10.1051/cocv/2009043}, mrnumber = {2775186}, zbl = {1218.35007}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2009043/} }
TY - JOUR AU - Mielke, Alexander AU - Stefanelli, Ulisse TI - Weighted energy-dissipation functionals for gradient flows JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 52 EP - 85 VL - 17 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2009043/ DO - 10.1051/cocv/2009043 LA - en ID - COCV_2011__17_1_52_0 ER -
%0 Journal Article %A Mielke, Alexander %A Stefanelli, Ulisse %T Weighted energy-dissipation functionals for gradient flows %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 52-85 %V 17 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2009043/ %R 10.1051/cocv/2009043 %G en %F COCV_2011__17_1_52_0
Mielke, Alexander; Stefanelli, Ulisse. Weighted energy-dissipation functionals for gradient flows. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 52-85. doi : 10.1051/cocv/2009043. http://www.numdam.org/articles/10.1051/cocv/2009043/
[1] Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel, Switzerland (2005). | MR | Zbl
, and ,[2] Singular perturbation and interpolation. Math. Models Methods Appl. Sci. 4 (1994) 557-570. | MR | Zbl
and ,[3] Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Leyden, The Netherlands (1976). | MR | Zbl
,[4] Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften 223. Springer-Verlag, Berlin, Germany (1976). | MR | Zbl
and ,[5] Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys. Rev. (2) 97 (1955) 1463-1469. | MR | Zbl
,[6] Classes d'interpolation associées à un opérateur monotone. C. R. Acad. Sci. Paris Sér. A-B 276 (1973) A1553-A1556. | MR | Zbl
,[7] Monotonicity methods in Hilbert spaces and some application to nonlinear partial differential equations, in Contrib. to nonlin. functional analysis, Proc. Sympos. Univ. Wisconsin, Madison, Academic Press, New York, USA (1971) 101-156. | MR | Zbl
,[8] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland Math. Studies 5. Amsterdam, North-Holland (1973). | MR | Zbl
,[9] Interpolation classes for monotone operators, in Partial differential equations and related topics (Program, Tulane Univ., New Orleans, 1974), Lecture Notes in Math. 446, Springer, Berlin, Germany (1975) 65-74. | MR | Zbl
,[10] Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du temps. C. R. Acad. Sci. Paris Sér. A-B 282 (1976) A971-A974. | MR | Zbl
and ,[11] Un principe variationnel associé à certaines équations paraboliques. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B 282 (1976) A1197-A1198. | MR | Zbl
and ,[12] Optimization and nonsmooth analysis, Classics in Applied Mathematics 5. Second edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (1990). | MR | Zbl
,[13] Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids 56 (2008) 1885-1904. | MR | Zbl
and ,[14] Semi-groups of nonlinear contractions and dissipative sets. J. Funct. Anal. 3 (1969) 376-418. | MR | Zbl
and ,[15] Conjectures concerning some evolution problems. Duke Math. J. 81 (1996) 255-268. A celebration of John F. Nash, Jr. | MR | Zbl
,[16] Selfdual partial differential systems and their variational principles, Springer Monographs in Mathematics. Springer, New York, USA (2009). | MR
,[17] Variational principles in the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 13 (1963) 179-191. | MR | Zbl
,[18] Variational principles for linear elastodynamics. Arch. Ration. Mech. Anal. 16 (1964) 34-50. | MR | Zbl
,[19] Variational principles for linear initial value problems. Quart. Appl. Math. 22 (1964) 252-256. | Zbl
,[20] Variational principles for parabolic equations. Appl. Math. 14 (1969) 278-297. | Zbl
,[21] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108. American Mathematical Society, USA (1994). | MR | Zbl
,[22] Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47 (1994) 405-435. | MR | Zbl
and ,[23] Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan 19 (1967) 493-507. | MR | Zbl
,[24] Non-homogeneus boundary value problems and applications 1. Springer-Verlag, New York-Heidelberg (1972). | Zbl
and ,[25] Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989) 281-330. | Numdam | MR | Zbl
, and ,[26] A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM: COCV 14 (2008) 494-516. | Numdam | MR
and ,[27] A discrete variational principle for rate-independent evolution. Adv. Calc. Var. 1 (2008) 399-431. | MR | Zbl
and ,[28] Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B 282 (1976) A1035-A1038. | MR | Zbl
,[29] Un théorème de minimum pour certains systèmes dissipatifs. Variante hilbertienne. Travaux Sém. Anal. Convexe 6 (1976) 22. | MR | Zbl
,[30] A posteriori error estimates for variable time-step discretization of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525-589. | MR | Zbl
, and ,[31] A continuum model of kinetic roughening and coarsening in thin films. J. Mech. Phys. Solids 47 (1999) 697-730. | MR | Zbl
, and ,[32] The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174. | MR | Zbl
,[33] Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: COCV 12 (2006) 564-614. | Numdam | MR | Zbl
and ,[34] A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) VII (2008) 97-169. | Numdam | MR | Zbl
, and ,[35] Attractors for gradient flows of non convex functionals and applications. Arch. Ration. Anal. Mech. 187 (2008) 91-135. | MR | Zbl
, and ,[36] Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl. 6 (1996) 377-418. | MR | Zbl
,[37] Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. (4) 146 (1987) 65-96. | MR | Zbl
,[38] The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Contr. Opt. 47 (2008) 1615-1642. | MR | Zbl
,[39] A variational principle for hardening elasto-plasticity. SIAM J. Math. Anal. 40 (2008) 623-652. | MR | Zbl
,[40] The discrete Brezis-Ekeland principle. J. Convex Anal. 16 (2009) 71-87. | MR | Zbl
,[41] Théorème d'interpolation non linéaire et applications. C. R. Acad. Sci. Paris Sér. A-B 270 (1970) A1729-A1731. | MR | Zbl
,[42] Interpolation non linéaire et régularité. J. Funct. Anal. 9 (1972) 469-489. | MR | Zbl
,[43] Interpolation theory, function spaces, differential operators. Second edition, Johann Ambrosius Barth, Heidelberg, Germany (1995). | MR | Zbl
,[44] A new approach to evolution. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 233-238. | MR | Zbl
,[45] An extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl. 18 (2008) 633-650. | MR | Zbl
,Cité par Sources :