On a semilinear variational problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 86-101.

We provide a detailed analysis of the minimizers of the functional u n |u| 2 +D n |u| γ , γ(0,2), subject to the constraint u L 2 =1. This problem, e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties of the minimizers and also study their behavior near the critical exponent 2.

DOI : 10.1051/cocv/2009038
Classification : 35J20, 49J45, 35Q55
Mots clés : nonlinear minimum problem, parabolic Anderson model, variational methods, gamma-convergence, ground state solutions
@article{COCV_2011__17_1_86_0,
     author = {Schmidt, Bernd},
     title = {On a semilinear variational problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {86--101},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {1},
     year = {2011},
     doi = {10.1051/cocv/2009038},
     mrnumber = {2775187},
     zbl = {1213.35222},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2009038/}
}
TY  - JOUR
AU  - Schmidt, Bernd
TI  - On a semilinear variational problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 86
EP  - 101
VL  - 17
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2009038/
DO  - 10.1051/cocv/2009038
LA  - en
ID  - COCV_2011__17_1_86_0
ER  - 
%0 Journal Article
%A Schmidt, Bernd
%T On a semilinear variational problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 86-101
%V 17
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2009038/
%R 10.1051/cocv/2009038
%G en
%F COCV_2011__17_1_86_0
Schmidt, Bernd. On a semilinear variational problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 86-101. doi : 10.1051/cocv/2009038. http://www.numdam.org/articles/10.1051/cocv/2009038/

[1] H. Berestycki and P.L. Lions, Nonlinear scalar field equations I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983) 313-345. | MR | Zbl

[2] M. Biskup and W. König, Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29 (2001) 636-682. | MR | Zbl

[3] A. Braides, Γ-Convergence for Beginners. Oxford University Press, Oxford, UK (2002). | MR | Zbl

[4] J.E. Brother and W.P. Ziemer, Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384 (1988) 153-179. | MR | Zbl

[5] C.C. Chen and C.S. Lin, Uniqueness of the ground state solutions of Δu + f(u) = 0 in n , n ≥ 3. Comm. Partial Diff. Eq. 16 (1991) 1549-1572. | MR | Zbl

[6] C. Cortazar, M. Elgueta and P. Felmer, On a semilinear elliptic problem in N with a non-Lipschitzian nonlinearity. Adv. Diff. Eq. 1 (1996) 199-218. | Zbl

[7] C. Cortazar, M. Elgueta and P. Felmer, Uniqueness of positive solutions of Δu + f(u) = 0 in n , N ≥ 3. Arch. Rational Mech. Anal. 142 (1998) 127-141. | MR | Zbl

[8] J. Gärtner and S.A. Molchanov, Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 (1990) 613-655. | MR | Zbl

[9] W. König, Große Abweichungen, Techniken und Anwendungen. Vorlesungsskript Universität Leipzig, Germany (2006).

[10] M.K. Kwong, Uniqueness of positive solutions of Δu - u +up = 0 in n . Arch. Rational Mech. Anal. 105 (1989) 243-266. | MR | Zbl

[11] E.H. Lieb and M. Loss, Analysis, AMS Graduate Studies 14. Second edition, Providence, USA (2001). | MR | Zbl

[12] P. Pucci, M. García-Huidobro, R. Manásevich and J. Serrin, Qualitative properties of ground states for singular elliptic equations with weights. Ann. Mat. Pura Appl. 185 (2006) 205-243. | MR | Zbl

Cité par Sources :