A regularity result for a convex functional and bounds for the singular set
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 1002-1017.

In this paper we prove a regularity result for local minimizers of functionals of the Calculus of Variations of the type

Ω f(x,Du)dx
where Ω is a bounded open set in n , u W loc 1,p (Ω; N ), p > 1, n 2 and N 1. We use the technique of difference quotient without the usual assumption on the growth of the second derivatives of the function f. We apply this result to give a bound on the Hausdorff dimension of the singular set of minimizers.

DOI : 10.1051/cocv/2009030
Classification : 35J50, 35J60, 35B65
Mots-clés : partial regularity, singular sets, fractional differentiability, variational integrals
@article{COCV_2010__16_4_1002_0,
     author = {De Maria, Bruno},
     title = {A regularity result for a convex functional and bounds for the singular set},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1002--1017},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {4},
     year = {2010},
     doi = {10.1051/cocv/2009030},
     mrnumber = {2744159},
     zbl = {1203.35088},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2009030/}
}
TY  - JOUR
AU  - De Maria, Bruno
TI  - A regularity result for a convex functional and bounds for the singular set
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 1002
EP  - 1017
VL  - 16
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2009030/
DO  - 10.1051/cocv/2009030
LA  - en
ID  - COCV_2010__16_4_1002_0
ER  - 
%0 Journal Article
%A De Maria, Bruno
%T A regularity result for a convex functional and bounds for the singular set
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 1002-1017
%V 16
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2009030/
%R 10.1051/cocv/2009030
%G en
%F COCV_2010__16_4_1002_0
De Maria, Bruno. A regularity result for a convex functional and bounds for the singular set. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 1002-1017. doi : 10.1051/cocv/2009030. http://www.numdam.org/articles/10.1051/cocv/2009030/

[1] E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261-281. | Zbl

[2] E. Acerbi and N. Fusco, Regularity of minimizers of non-quadratic functionals: the case 1<p<2. J. Math. Anal. Appl. 140 (1989) 115-135. | Zbl

[3] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). | Zbl

[4] M. Carozza and A. Passarelli Di Napoli, A regularity theorem for minimizers of quasiconvex integrals: the case 1<p<2 . Proc. R. Math. Soc. Edinb. A 126 (1996) 1181-1199. | Zbl

[5] M. Carozza and A. Passarelli Di Napoli, Model problems from nonlinear elasticity: partial regularity results. ESAIM: COCV 13 (2007) 120-134. | Numdam

[6] M. Carozza, N. Fusco and R. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Annali di matematica pura e applicata (IV) CLXXV (1998) 141-164. | Zbl

[7] G. Cupini, N. Fusco and R. Petti, Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999) 578-597. | Zbl

[8] E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. It. 1 (1968) 135-137. | Zbl

[9] L. Esposito, F. Leonetti and G. Mingione, Higher integrability for minimizers of integral functionals with (p,q) growth. J. Differ. Equ. 157 (1999) 414-438. | Zbl

[10] L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with (p,q) growth. Forum Math. 14 (2002) 245-272. | Zbl

[11] L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with (p,q) growth. J. Differ. Equ. 204 (2004) 5-55. | Zbl

[12] L.C. Evans, Quasiconvexity and partial regularity in the Calculus of Variations. Arch. Ration. Mech. Anal. 95 (1984) 227-252. | Zbl

[13] L.C. Evans and R.F. Gariepy, Blow-up, compactness and partial regularity in the Calculus of Variations. Indiana Univ. Math. J. 36 (1987) 361-371. | Zbl

[14] I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1997) 463-499. | EuDML | Numdam | Zbl

[15] I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity. ESAIM: COCV 7 (2002) 69-95. | EuDML | Numdam | Zbl

[16] M. Giaquinta and G. Modica, Remarks on the regularity of minimizers of certain degenerate functionals. Manuscripta Math. 47 (1986) 55-99. | EuDML | Zbl

[17] E. Giusti, Direct methods in the calculus of variations. World Scientific, River Edge, USA (2003). | Zbl

[18] O. John, J. Malý and J. Stará, Nowhere continuous solutions to elliptic systems. Comm. Math. Univ. Carolin. 30 (1989) 33-43. | EuDML | Zbl

[19] J. Kristensen and G. Mingione, Non-differentiable functionals and singular sets of minima. C. R. Acad. Sci. Paris Ser. I Math. 340 (2005) 93-98. | Zbl

[20] J. Kristensen and G. Mingione, The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006) 331-398. | Zbl

[21] G. Mingione, The singular set of solutions to non differentiable elliptic systems. Arch. Ration. Mech. Anal. 166 (2003) 287-301. | Zbl

[22] G. Mingione, Bounds for the singular set of solutions to non linear elliptic system. Calc. Var. 18 (2003) 373-400. | Zbl

[23] G. Mingione, Regularity of minima: an invitation to the dark side of calculus of variations. Appl. Math. 51 (2006) 355-426. | EuDML | Zbl

[24] J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, in Theory of nonlinear operators, Proc. Fourth Internat. Summer School, Acad. Sci., Berlin (1975) 197-206. | Zbl

[25] A. Passarelli Di Napoli, A regularity result for a class of polyconvex functionals. Ric. di Matem. XLVIII (1994) 379-393. | Zbl

[26] V. Šverák and X. Yan, A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. 10 (2000) 213-221. | Zbl

[27] V. Šverák and X. Yan, Non Lipschitz minimizers of smooth strongly convex variational integrals. Proc. Nat. Acad. Sc. USA 99 (2002) 15269-15276. | Zbl

Cité par Sources :