In this paper we prove a regularity result for local minimizers of functionals of the Calculus of Variations of the type
Mots-clés : partial regularity, singular sets, fractional differentiability, variational integrals
@article{COCV_2010__16_4_1002_0, author = {De Maria, Bruno}, title = {A regularity result for a convex functional and bounds for the singular set}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1002--1017}, publisher = {EDP-Sciences}, volume = {16}, number = {4}, year = {2010}, doi = {10.1051/cocv/2009030}, mrnumber = {2744159}, zbl = {1203.35088}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2009030/} }
TY - JOUR AU - De Maria, Bruno TI - A regularity result for a convex functional and bounds for the singular set JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 1002 EP - 1017 VL - 16 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2009030/ DO - 10.1051/cocv/2009030 LA - en ID - COCV_2010__16_4_1002_0 ER -
%0 Journal Article %A De Maria, Bruno %T A regularity result for a convex functional and bounds for the singular set %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 1002-1017 %V 16 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2009030/ %R 10.1051/cocv/2009030 %G en %F COCV_2010__16_4_1002_0
De Maria, Bruno. A regularity result for a convex functional and bounds for the singular set. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 1002-1017. doi : 10.1051/cocv/2009030. http://www.numdam.org/articles/10.1051/cocv/2009030/
[1] A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261-281. | Zbl
and ,[2] Regularity of minimizers of non-quadratic functionals: the case . J. Math. Anal. Appl. 140 (1989) 115-135. | Zbl
and ,[3] Sobolev Spaces. Academic Press, New York (1975). | Zbl
,[4] A regularity theorem for minimizers of quasiconvex integrals: the case . Proc. R. Math. Soc. Edinb. A 126 (1996) 1181-1199. | Zbl
and ,[5] Model problems from nonlinear elasticity: partial regularity results. ESAIM: COCV 13 (2007) 120-134. | Numdam
and ,[6] Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Annali di matematica pura e applicata (IV) CLXXV (1998) 141-164. | Zbl
, and ,[7] Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999) 578-597. | Zbl
, and ,[8] Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. It. 1 (1968) 135-137. | Zbl
,[9] Higher integrability for minimizers of integral functionals with growth. J. Differ. Equ. 157 (1999) 414-438. | Zbl
, and ,[10] Regularity results for minimizers of irregular integrals with growth. Forum Math. 14 (2002) 245-272. | Zbl
, and ,[11] Sharp regularity for functionals with growth. J. Differ. Equ. 204 (2004) 5-55. | Zbl
, and ,[12] Quasiconvexity and partial regularity in the Calculus of Variations. Arch. Ration. Mech. Anal. 95 (1984) 227-252. | Zbl
,[13] Blow-up, compactness and partial regularity in the Calculus of Variations. Indiana Univ. Math. J. 36 (1987) 361-371. | Zbl
and ,[14] Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1997) 463-499. | EuDML | Numdam | Zbl
and ,[15] An existence result for a nonconvex variational problem via regularity. ESAIM: COCV 7 (2002) 69-95. | EuDML | Numdam | Zbl
, and ,[16] Remarks on the regularity of minimizers of certain degenerate functionals. Manuscripta Math. 47 (1986) 55-99. | EuDML | Zbl
and ,[17] Direct methods in the calculus of variations. World Scientific, River Edge, USA (2003). | Zbl
,[18] Nowhere continuous solutions to elliptic systems. Comm. Math. Univ. Carolin. 30 (1989) 33-43. | EuDML | Zbl
, and ,[19] Non-differentiable functionals and singular sets of minima. C. R. Acad. Sci. Paris Ser. I Math. 340 (2005) 93-98. | Zbl
and ,[20] The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006) 331-398. | Zbl
and ,[21] The singular set of solutions to non differentiable elliptic systems. Arch. Ration. Mech. Anal. 166 (2003) 287-301. | Zbl
,[22] Bounds for the singular set of solutions to non linear elliptic system. Calc. Var. 18 (2003) 373-400. | Zbl
,[23] Regularity of minima: an invitation to the dark side of calculus of variations. Appl. Math. 51 (2006) 355-426. | EuDML | Zbl
,[24] Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, in Theory of nonlinear operators, Proc. Fourth Internat. Summer School, Acad. Sci., Berlin (1975) 197-206. | Zbl
,[25] A regularity result for a class of polyconvex functionals. Ric. di Matem. XLVIII (1994) 379-393. | Zbl
,[26] A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. 10 (2000) 213-221. | Zbl
and ,[27] Non Lipschitz minimizers of smooth strongly convex variational integrals. Proc. Nat. Acad. Sc. USA 99 (2002) 15269-15276. | Zbl
and ,Cité par Sources :