In this paper, we study the stabilization of a two-dimensional Burgers equation around a stationary solution by a nonlinear feedback boundary control. We are interested in Dirichlet and Neumann boundary controls. In the literature, it has already been shown that a linear control law, determined by stabilizing the linearized equation, locally stabilizes the two-dimensional Burgers equation. In this paper, we define a nonlinear control law which also provides a local exponential stabilization of the two-dimensional Burgers equation. We end this paper with a few numerical simulations, comparing the performance of the nonlinear law with the linear one.
Mots-clés : Dirichlet control, Neumann control, feedback control, stabilization, Burgers equation, algebraic Riccati equation
@article{COCV_2010__16_4_929_0, author = {Thevenet, Laetitia and Buchot, Jean-Marie and Raymond, Jean-Pierre}, title = {Nonlinear feedback stabilization of a two-dimensional {Burgers} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {929--955}, publisher = {EDP-Sciences}, volume = {16}, number = {4}, year = {2010}, doi = {10.1051/cocv/2009028}, mrnumber = {2744156}, zbl = {1202.93129}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2009028/} }
TY - JOUR AU - Thevenet, Laetitia AU - Buchot, Jean-Marie AU - Raymond, Jean-Pierre TI - Nonlinear feedback stabilization of a two-dimensional Burgers equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 929 EP - 955 VL - 16 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2009028/ DO - 10.1051/cocv/2009028 LA - en ID - COCV_2010__16_4_929_0 ER -
%0 Journal Article %A Thevenet, Laetitia %A Buchot, Jean-Marie %A Raymond, Jean-Pierre %T Nonlinear feedback stabilization of a two-dimensional Burgers equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 929-955 %V 16 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2009028/ %R 10.1051/cocv/2009028 %G en %F COCV_2010__16_4_929_0
Thevenet, Laetitia; Buchot, Jean-Marie; Raymond, Jean-Pierre. Nonlinear feedback stabilization of a two-dimensional Burgers equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 929-955. doi : 10.1051/cocv/2009028. http://www.numdam.org/articles/10.1051/cocv/2009028/
[1] Stabilisation par feedback et approximation des équations de Navier-Stokes. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France (2006).
,[2] Lyapunov function and local feedback boundary stabilization of the Navier-Stokes equations. SIAM J. Control. (to appear).
,[3] Feedback control methodologies for nonlinear systems. J. Optim. Theory Appl. 107 (2000) 1-33. | Zbl
, and ,[4] A penalized Robin approach for solving a parabolic equation with non smooth Dirichlet boundary conditions. Asymptotic Anal. 34 (2003) 121-136. | Zbl
, and ,[5] Representation and Control of Infinite Dimensional Systems, Vol. 1. Birkhäuser (1992). | Zbl
, , and ,[6] Representation and Control of Infinite Dimensional Systems, Vol. 2. Birkhäuser (1993). | Zbl
, , and ,[7] Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501-1542.
, , and ,[8] Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case. ESAIM: COCV 12 (2006) 466-483 (electronic). | Numdam | Zbl
, , and ,[9] Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand. 69 (1991) 217-290. | Zbl
and ,[10] Lectures on Nonlinear Hyperbolic Differential Equations. Springer (1997). | Zbl
,[11] Nonlinear stabilization of shock-like unstable equilibria in the viscous Burgers PDE. IEEE Trans. Automat. Contr. 53 (2008) 1678-1683.
, and ,[12] Control Theory for Partial Differential Equations, Vol. 1. Cambridge University Press (2000). | Zbl
and ,[13] A Schur method method for solving algebraic Riccati equations. IEEE Trans. Automat. Contr. 24 (1979) 913-921. | Zbl
,[14] Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs. J. Math. Soc. Japan 14 (1962) 233-241. | Zbl
,[15] Problèmes aux limites non homogènes, Vol. 2. Dunod, Paris (1968). | Zbl
and ,[16] Boundary feedback stabilization of the two dimensional Navier-Stokes equations. SIAM J. Control Optim. 45 (2006) 790-828. | Zbl
,Cité par Sources :