Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 648-676.

We prove some new upper and lower bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals. In particular, we improve Pólya and Szegö's [Annals of Mathematical Studies 27 (1951)] lower bound for quadrilaterals and extend Hersch's [Z. Angew. Math. Phys. 17 (1966) 457-460] upper bound for parallelograms to general quadrilaterals.

DOI : 10.1051/cocv/2009018
Classification : 35P15, 35J05
Mots clés : Dirichlet eigenvalues, polygons, variational bounds
@article{COCV_2010__16_3_648_0,
     author = {Freitas, Pedro and Siudeja, Bat{\l}omiej},
     title = {Bounds for the first {Dirichlet} eigenvalue of triangles and quadrilaterals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {648--676},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {3},
     year = {2010},
     doi = {10.1051/cocv/2009018},
     mrnumber = {2674631},
     zbl = {1205.35174},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2009018/}
}
TY  - JOUR
AU  - Freitas, Pedro
AU  - Siudeja, Batłomiej
TI  - Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 648
EP  - 676
VL  - 16
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2009018/
DO  - 10.1051/cocv/2009018
LA  - en
ID  - COCV_2010__16_3_648_0
ER  - 
%0 Journal Article
%A Freitas, Pedro
%A Siudeja, Batłomiej
%T Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 648-676
%V 16
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2009018/
%R 10.1051/cocv/2009018
%G en
%F COCV_2010__16_3_648_0
Freitas, Pedro; Siudeja, Batłomiej. Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 648-676. doi : 10.1051/cocv/2009018. http://www.numdam.org/articles/10.1051/cocv/2009018/

[1] P. Antunes and P. Freitas, New bounds for the principal Dirichlet eigenvalue of planar regions. Experiment. Math. 15 (2006) 333-342. | Zbl

[2] P. Antunes and P. Freitas, A numerical study of the spectral gap. J. Phys. A 41 (2008) 055201. | Zbl

[3] D. Borisov and P. Freitas, Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 547-560. | Numdam | Zbl

[4] P. Freitas, Upper and lower bounds for the first Dirichlet eigenvalue of a triangle. Proc. Amer. Math. Soc. 134 (2006) 2083-2089. | Zbl

[5] P. Freitas, Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi. J. Funct. Anal. 251 (2007) 376-398. | Zbl

[6] J. Hersch, Constraintes rectilignes parallèles et valeurs propres de membranes vibrantes. Z. Angew. Math. Phys. 17 (1966) 457-460. | Zbl

[7] W. Hooker and M.H. Protter, Bounds for the first eigenvalue of a rhombic membrane. J. Math. Phys. 39 (1960/1961) 18-34. | Zbl

[8] E. Makai, On the principal frequency of a membrane and the torsional rigidity of a beam, in Studies in mathematical analysis and related topics, Essays in honor of George Pólya, Stanford Univ. Press, Stanford (1962) 227-231.

[9] P.J. Méndez-Hernández, Brascamp-Lieb-Luttinger inequalities for convex domains of finite inradius. Duke Math. J. 113 (2002) 93-131. | Zbl

[10] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Annals of Mathematical Studies 27. Princeton University Press, Princeton (1951). | Zbl

[11] M.H. Protter, A lower bound for the fundamental frequency of a convex region. Proc. Amer. Math. Soc. 81 (1981) 65-70. | Zbl

[12] C.K. Qu and R. Wong, “Best possible” upper and lower bounds for the zeros of the Bessel fuction Jv(x). Trans. Amer. Math. Soc. 351 (1999) 2833-2859. | Zbl

[13] B. Siudeja, Sharp bounds for eigenvalues of triangles. Michigan Math. J. 55 (2007) 243-254. | Zbl

[14] B. Siudeja, Isoperimetric inequalities for eigenvalues of triangles. Ind. Univ. Math. J. (to appear).

Cité par Sources :