Quantum groups in higher genus and Drinfeld’s new realizations method (𝔰𝔩 2 case)
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 30 (1997) no. 6, pp. 821-846.
@article{ASENS_1997_4_30_6_821_0,
     author = {Enriquez, B. and Rubtsov, V. N.},
     title = {Quantum groups in higher genus and {Drinfeld{\textquoteright}s} new realizations method (${\mathfrak {s}\mathfrak {l}}_2$ case)},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {821--846},
     publisher = {Elsevier},
     volume = {Ser. 4, 30},
     number = {6},
     year = {1997},
     doi = {10.1016/s0012-9593(97)89940-5},
     mrnumber = {99b:17011},
     zbl = {0897.17012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/s0012-9593(97)89940-5/}
}
TY  - JOUR
AU  - Enriquez, B.
AU  - Rubtsov, V. N.
TI  - Quantum groups in higher genus and Drinfeld’s new realizations method (${\mathfrak {s}\mathfrak {l}}_2$ case)
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1997
SP  - 821
EP  - 846
VL  - 30
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/s0012-9593(97)89940-5/
DO  - 10.1016/s0012-9593(97)89940-5
LA  - en
ID  - ASENS_1997_4_30_6_821_0
ER  - 
%0 Journal Article
%A Enriquez, B.
%A Rubtsov, V. N.
%T Quantum groups in higher genus and Drinfeld’s new realizations method (${\mathfrak {s}\mathfrak {l}}_2$ case)
%J Annales scientifiques de l'École Normale Supérieure
%D 1997
%P 821-846
%V 30
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/s0012-9593(97)89940-5/
%R 10.1016/s0012-9593(97)89940-5
%G en
%F ASENS_1997_4_30_6_821_0
Enriquez, B.; Rubtsov, V. N. Quantum groups in higher genus and Drinfeld’s new realizations method (${\mathfrak {s}\mathfrak {l}}_2$ case). Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 30 (1997) no. 6, pp. 821-846. doi : 10.1016/s0012-9593(97)89940-5. http://www.numdam.org/articles/10.1016/s0012-9593(97)89940-5/

[1] J. Beck, Braid group action and quantum affine algebras (Commun. Math. Phys., Vol. 165, 1994, pp. 555-68). | MR | Zbl

[2] V. Chari and A. Pressley, Quantum affine algebras (Commun. Math. Phys., Vol. 142, 1991, pp. 261-83). | MR | Zbl

[3] J. Ding and I. B. Frenkel, Isomorphism of two realizations of quantum affine algebras Uq(ĝln) (Commun. Math. Phys., Vol. 156, 1993, pp. 277-300). | MR | Zbl

[4] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras (Sov. Math. Dokl., Vol. 36, 1988). | MR | Zbl

[5] V. G. Drinfeld, Quasi-Hopf algebras (Leningrand Math. J., Vol. 1:6, 1990, pp. 1419-57). | MR | Zbl

[6] B. Enriquez and G. Felder, in preparation.

[7] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras, I (Selecta Math. 2 (1996), No. 1, pp. 1-41), q-alg/9506005. | MR | Zbl

[8] B. L. Feigin and E. V. Frenkel, Quantum W-algebras and elliptic algebras (Commun. Math. Phys., Vol. 178, 1996, pp. 653-678), q-alg/9508009. | MR | Zbl

[9] I. B. Frenkel and N. Jing, Vertex representations of quantum affine algebras (Proc. Natl. Acad. Sci. USA, Vol. 85, 1988, pp. 9373-7). | MR | Zbl

[10] S. M. Khoroshkin and V. N. Tolstoy, On Drinfeld's realization of quantum affine algebras (J. Geom. Phys., Vol. 11, 1993, pp. 445-52). | MR | Zbl

[11] N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Central extensions of quantum current groups (Lett. Math. Phys., Vol. 19, 1990, pp. 133-42). | MR | Zbl

[12] A. G. Reyman and M. A. Semenov-Tian-Shansky, Integrable systems II, ch. 11, (Encycl. Sov. Math., Vol. 16, “Dynamical systems, 7”, Springer-Verlag, 1993, pp. 188-225).

[13] M. A. Semenov-Tian-Shansky, Poisson-Lie groups, quantum duality principle, and the quantum double (Theor. Math. Phys., Vol. 93, 1992, pp. 1292-307). | MR | Zbl

[14] J.-P. Serre, Groupes algébriques et corps de classes, Hermann, Paris, 1959. | MR | Zbl

[15] E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation (Funct. An. Appl., Vol. 16, 1982, pp. 263-70). | MR | Zbl

[16] D. B. Uglov, The quantum bialgebra associated with the eight-vertex R-matrix (Lett. Math. Phys., Vol. 28, 1993, pp. 139-42). | MR | Zbl

Cité par Sources :