@article{ASENS_2002_4_35_6_773_0, author = {Friedlander, Eric M. and Suslin, Andrei}, title = {The spectral sequence relating algebraic $K$-theory to motivic cohomology}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {773--875}, publisher = {Elsevier}, volume = {Ser. 4, 35}, number = {6}, year = {2002}, doi = {10.1016/s0012-9593(02)01109-6}, zbl = {1047.14011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(02)01109-6/} }
TY - JOUR AU - Friedlander, Eric M. AU - Suslin, Andrei TI - The spectral sequence relating algebraic $K$-theory to motivic cohomology JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 773 EP - 875 VL - 35 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(02)01109-6/ DO - 10.1016/s0012-9593(02)01109-6 LA - en ID - ASENS_2002_4_35_6_773_0 ER -
%0 Journal Article %A Friedlander, Eric M. %A Suslin, Andrei %T The spectral sequence relating algebraic $K$-theory to motivic cohomology %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 773-875 %V 35 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(02)01109-6/ %R 10.1016/s0012-9593(02)01109-6 %G en %F ASENS_2002_4_35_6_773_0
Friedlander, Eric M.; Suslin, Andrei. The spectral sequence relating algebraic $K$-theory to motivic cohomology. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 6, pp. 773-875. doi : 10.1016/s0012-9593(02)01109-6. http://www.numdam.org/articles/10.1016/s0012-9593(02)01109-6/
[1] Algebraic K-Theory, W.A. Benjamin, 1968. | MR | Zbl
,[2] Beilinson A., Letter to C. Soulé (1982).
[3] Algebraic cycles and higher K-theory, Adv. in Math. 61 (1986) 267-304. | MR | Zbl
,[4] The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (1994) 537-568. | MR | Zbl
,[5] Bloch S., Lichtenbaum S., A spectral sequence for motivic cohomology, Preprint.
[6] General Topology, Springer-Verlag, 1989.
,[7] Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, in: Geometric Applications of Homotopy Theory II, Lecture Notes in Math., 658, Springer-Verlag, 1978, pp. 80-130. | Zbl
, ,[8] Algebraic K-theory with coefficients Z/p, in: Geometric Applications of Homotopy Theory, Lecture Notes in Math., 657, Springer-Verlag, 1978, pp. 40-84. | MR | Zbl
,[9] Algebraic K-theory as generalized sheaf cohomology, in: Algebraic K-theory, I: Higher K-theories, Lecture Notes in Math., 341, Springer-Verlag, 1973, pp. 266-292. | MR | Zbl
, ,[10] Bivariant cycle cohomology, in: , , (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 138-187. | MR | Zbl
, ,[11] Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958. | MR | Zbl
,[12] Weight filtrations via commuting automorphisms, K-Theory 9 (1995) 139-172. | MR | Zbl
,[13] Generalized étale cohomology theories, Birkhäuser Verlag, Basel, 1997. | MR | Zbl
,[14] A pullback theorem for cofibrations, Manuscripta Math. 58 (1987) 381-384. | MR | Zbl
,[15] Some filtrations on higher K-theory and related invariants, K-theory 6 (1992) 431-457. | MR | Zbl
,[16] Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001) 299-363. | MR | Zbl
,[17] A union theorem for cofibrations, Arch. Math. 24 (1973) 410-415. | MR | Zbl
,[18] Products in exact couples, Ann. Math. 59 (1954) 558-569. | MR | Zbl
,[19] Homology, Springer-Verlag, 1963. | MR | Zbl
,[20] Simplicial Objects in Algebraic Topology, University of Chicago Press, 1967. | Zbl
,[21] A1-homotopy theory of schemes, Publ. Math. IHES 90 (2001) 45-143. | Numdam | MR | Zbl
, ,[22] Multiplications on the Moore spectrum, Mem. Fac. Sci Kyushu, Ser. A 38 (1984) 257-276. | MR | Zbl
,[23] Bemerkungen über die Erweiterung von Homotopien, Arch. Math. 18 (1967) 81-88. | MR | Zbl
,[24] Homotopical Algebra, Lecture Notes in Math., 43, Springer-Verlag, 1967. | MR | Zbl
,[25] Higher algebraic K-theory: I, in: Algebraic K-theory, I: Higher K-theories, Lecture Notes in Math., 341, Springer-Verlag, 1973, pp. 85-147. | MR | Zbl
,[26] Categories and cohomology theories, Topology 13 (1974) 293-312. | MR | Zbl
,[27] Algèbre locale multiplicités, Lecture Notes in Math., 341, Springer-Verlag, 1975. | MR | Zbl
,[28] The homotopy category is a homotopy category, Arch. Math. 23 (1972) 435-441. | MR | Zbl
,[29] Higher Chow groups and étale cohomology, in: , , (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 237-252. | MR | Zbl
,[30] Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996) 61-94. | MR | Zbl
, ,[31] Bloch-Kato conjecture and motivic cohomology with finite coefficients, in: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, 1998, pp. 117-189. | MR | Zbl
, ,[32] Thomason R., Trobaugh T., Higher algebraic K-theory of schemes and of derived categories, in: The Grothendieck Festschrift, Vol. III, in: Progr. Math., Vol. 88, pp. 247-435. | MR
[33] Cohomological theory of presheaves with transfers, in: , , (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 87-137. | MR | Zbl
,[34] Triangulated category of motives over a field, in: , , (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 188-238. | MR | Zbl
,[35] Voevodsky V., Motivic cohomology are isomorphic to higher Chow groups, Preprint.
[36] Voevodsky V., Mazza C., Weibel C., Lectures on motivic cohomology, Preprint.
[37] Algebraic K-theory of spaces, in: Algebraic and Geometric Topology (New Brunswick, NJ, 1983), Lecture Notes in Math., 1126, Springer-Verlag, 1985, pp. 318-419. | MR | Zbl
,[38] An Introduction to Homological Algebra, Cambridge University Press, 1994. | MR | Zbl
,[39] Products in higher Chow groups and motivic cohomology, in: Algebraic K-theory (Seattle, WA, 1997), Proceedings of Symposia in Pure Math., 67, 1999, pp. 305-315. | MR | Zbl
,[40] Elements of Homotopy Theory, Springer-Verlag, 1978. | MR | Zbl
,Cité par Sources :