@article{ASENS_2002_4_35_5_673_0, author = {Ban, Dubravka}, title = {The {Aubert} involution and $R$-groups}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {673--693}, publisher = {Elsevier}, volume = {Ser. 4, 35}, number = {5}, year = {2002}, doi = {10.1016/s0012-9593(02)01105-9}, mrnumber = {1951440}, zbl = {1039.22010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(02)01105-9/} }
TY - JOUR AU - Ban, Dubravka TI - The Aubert involution and $R$-groups JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 673 EP - 693 VL - 35 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(02)01105-9/ DO - 10.1016/s0012-9593(02)01105-9 LA - en ID - ASENS_2002_4_35_5_673_0 ER -
%0 Journal Article %A Ban, Dubravka %T The Aubert involution and $R$-groups %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 673-693 %V 35 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(02)01105-9/ %R 10.1016/s0012-9593(02)01105-9 %G en %F ASENS_2002_4_35_5_673_0
Ban, Dubravka. The Aubert involution and $R$-groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 5, pp. 673-693. doi : 10.1016/s0012-9593(02)01105-9. http://www.numdam.org/articles/10.1016/s0012-9593(02)01105-9/
[1] Unipotent automorphic representations: conjectures, Astérisque 171-172 (1989) 13-71. | Numdam | MR | Zbl
,[2] Intertwining operators and residues 1.weighted characters, J. Func. Anal. 84 (1989) 19-84. | MR | Zbl
,[3] On elliptic tempered characters, Acta Math. 171 (1993) 73-138. | MR | Zbl
,[4] Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique, Trans. Amer. Math. Soc. 347 (1995) 2179-2189, Trans. Amer. Math. Soc. 348 (1996) 4687-4690, Erratum. | Zbl
,[5] Jacquet modules of parabolically induced representations and Weyl groups, Can. J. Math. 53 (4) (2001) 675-695. | MR | Zbl
,[6] Parabolic induction and Jacquet modules of representations of O(2n,F), Glasnik Mat. 34 (54) (1999) 147-185. | MR | Zbl
,[7] Self-duality in the case of SO(2n,F), Glasnik Mat. 34 (54) (1999) 187-196. | MR | Zbl
,[8] A unitarity criterion for p-adic groups, Invent. Math. 98 (1) (1989) 19-37. | MR | Zbl
, ,[9] Induced representations of reductive p-adic groups, I, Ann. Sci. École Norm. Sup. 10 (1977) 441-472. | Numdam | MR | Zbl
, ,[10] Linear Algebraic Groups, Springer-Verlag, 1991. | MR | Zbl
,[11] Groupes et algèbres de Lie, Ch. 4, Paris, Hermann, 1968. | MR | Zbl
,[12] Casselman W., Introduction to the theory of admissible representations of -adic reductive groups, Preprint.
[13] Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math. 116 (1994) 1101-1151. | MR | Zbl
,[14] Goldberg D., Shahidi F., Automorphic -functions, intertwining operators and the irreducible tempered representations of -adic groups, Preprint.
[15] Harmonic analysis on reductive p-adic groups, Proc. Symp. Pure Math. 26 (1974) 167-192. | MR | Zbl
,[16] Elliptic representations for Sp(2n) and SO(n), Pacific J. Math. 161 (1993) 347-358. | MR | Zbl
,[17] On the Iwahori-Matsumoto involution and applications, Ann. Sci. École Norm. Sup. 28 (1995) 527-547. | Numdam | MR | Zbl
,[18] On square-integrable representations of classical p-adic groups II, Represent. Theory 4 (2000) 127-180. | MR | Zbl
,[19] L-indistinguishability and R-groups for quasi-split groups: unitary groups in even dimension, Ann. Sci. École Norm. Sup. 20 (1987) 31-64. | Numdam | MR | Zbl
,[20] Artin L-functions and normalization of intertwining operators, Ann. Sci. École Norm. Sup. 21 (1988) 67-89. | Numdam | MR | Zbl
, ,[21] Irreducibility theorems for principal series, in: Conference on Harmonic Analysis, Lecture Notes in Math., 266, Springer-Verlag, New York, 1972, pp. 197-214. | MR | Zbl
, ,[22] Algebra, Addison-Wesley, 1993. | MR | Zbl
,[23] Mœglin C., Tadić M., Construction of discrete series for classical -adic groups, Preprint.
[24] The Knapp-Stein dimension theorem for p-adic groups, Proc. Amer. Math. Soc. 68 (1978) 243-246. | MR | Zbl
,[25] Introduction to harmonic analysis on reductive p-adic groups, Math. Notes, 23, Princeton University Press, Princeton, NJ, 1979. | MR | Zbl
,[26] On certain L-functions, Amer. J. Math. 103 (1981) 297-355. | MR | Zbl
,[27] A proof of Langlands' conjecture on Plancherel measures; Complementary series for p-adic groups, Ann. of Math. 132 (1990) 273-330. | MR | Zbl
,[28] Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra 177 (1995) 1-33. | MR | Zbl
,[29] Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. École Norm. Sup. 19 (1986) 335-382. | Numdam | MR | Zbl
,[30] On regular square integrable representations of p-adic groups, Amer. J. Math. 120 (1998) 159-210. | MR | Zbl
,[31] Induced representations of reductive p-adic groups, II, On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. 13 (1980) 165-210. | Numdam | MR | Zbl
,Cité par Sources :