@article{ASENS_2001_4_34_2_159_0, author = {Sauzin, David}, title = {A new method for measuring the splitting of invariant manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {159--221}, publisher = {Elsevier}, volume = {Ser. 4, 34}, number = {2}, year = {2001}, doi = {10.1016/s0012-9593(00)01063-6}, mrnumber = {1841877}, zbl = {0987.37061}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(00)01063-6/} }
TY - JOUR AU - Sauzin, David TI - A new method for measuring the splitting of invariant manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2001 SP - 159 EP - 221 VL - 34 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(00)01063-6/ DO - 10.1016/s0012-9593(00)01063-6 LA - en ID - ASENS_2001_4_34_2_159_0 ER -
%0 Journal Article %A Sauzin, David %T A new method for measuring the splitting of invariant manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2001 %P 159-221 %V 34 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(00)01063-6/ %R 10.1016/s0012-9593(00)01063-6 %G en %F ASENS_2001_4_34_2_159_0
Sauzin, David. A new method for measuring the splitting of invariant manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 34 (2001) no. 2, pp. 159-221. doi : 10.1016/s0012-9593(00)01063-6. http://www.numdam.org/articles/10.1016/s0012-9593(00)01063-6/
[1] Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR 156 (1964) 9-12, (in Russian). [English translation: Soviet Math. Dokl. 5 (1964) 581-585]. | Zbl
,[2] Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (2) (1982) 331-358. | MR | Zbl
,[3] Local Methods in Nonlinear Differential Equations, Springer-Verlag, Berlin, 1989. | MR | Zbl
,[4] Exponentially small splitting of separatrices under fast quasi-periodic forcing, Comm. Math. Phys. 189 (1997) 35-71. | MR | Zbl
, , , ,[5] Homoclinic orbits to invariant tori in Hamiltonian systems, in: , , , , (Eds.), Multiple-Time-Scale Dynamical Systems, IMA Vol. in Math. and its Appl., Springer-Verlag, Berlin, 1998. | MR | Zbl
, ,[6] An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Comm. Math. Phys. 150 (1992) 433-463. | MR | Zbl
, ,[7] Splitting of separatrices in Hamiltonian systems with one and half degrees of freedom, Math. Phys. Elec. J. 3 (1997), paper 4. | MR | Zbl
, ,[8] Six lectures on transseries, analysable functions and the constructive proof of Dulac's conjecture, in: (Ed.), Bifurcations and Periodic Orbits of Vector Fields, Kluwer Academic, Dordrecht, 1993, pp. 75-184. | MR | Zbl
,[9] Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Bras. Mat. 25 (1) (1994) 57-76. | MR | Zbl
,[10] Exponentially small splitting of separatrices for difference equations with small step size, J. Dynam. Control Syst. 2 (2) (1996) 193-238. | MR | Zbl
, ,[11] Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable systems. A review, Rev. Math. Phys. 6 (3) (1994) 343-411. | MR | Zbl
,[12] Melnikov's approximation dominance. Some examples, Rev. Math. Phys. 11 (4) (1999) 451-461. | MR | Zbl
, , ,[13] Melnikov method and exponentially small splitting of separatrices, Physica D 101 (1997) 227-248. | MR | Zbl
,[14] On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations 15 (1974) 1-69. | MR | Zbl
,[15] Invariant Manifolds, Lect. Notes in Math., 583, Springer-Verlag, Berlin, 1977. | MR | Zbl
, , ,[16] Splitting of separatrices for the Chirikov's standard map, Preprint VINITI 6372-84, 1984, (in Russian). | MR | Zbl
,[17] Effective speed of Arnol'd diffusion and small denominators, Phys. Lett. A 143 (1990) 39-42. | MR
,[18] Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys 47 (1992) 57-133. | MR | Zbl
,[19] Hamiltonian perturbation theory: periodic orbits, resonances and intermittency, Nonlinearity 6 (1993) 885-904. | MR | Zbl
,[20] Tores invariants à torsion évanescente dans les systèmes hamiltoniens proches de l'intégrable, C.R. Acad. Sci. Paris, Série I 327 (1998) 833-836. | MR | Zbl
,[21] On the splitting of the invariant manifolds in multidimensional near-integrable Hamiltonian systems, Prépublication 220 de l'Institut de mathématiques de Jussieu, 1999. | Zbl
, , ,[22] Les méthodes nouvelles de la mécanique céleste, Vol. 2, Gauthier-Villars, Paris, 1893. | JFM | Zbl
,[23] Invariant tori, effective stability and quasimodes with exponentially small error terms, Preprint, 1999. | Zbl
,[24] Nekhoroshev estimates for quasi-convex Hamiltonian sytems, Math. Z. 213 (1993) 187-216. | EuDML | MR | Zbl
,[25] Existence of exponentially small separatrix splittings and homoclinic connections between whiskered tori in weakly hyperbolic near-integrable Hamiltonian systems, Physica D 114 (1998) 3-80. | MR | Zbl
, ,[26] Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé, Ann. Inst. Fourier 45 (1995) 453-511. | EuDML | Numdam | MR | Zbl
,[27] Averaging under fast quasiperiodic forcing, in: (Ed.), Hamiltonian Mechanics: Integrability and Chaotic Behaviour, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum Press, New York, 1994, pp. 13-34. | MR
,[28] A mechanism for the destruction of resonance tori of Hamiltonian systems, Math. USSR-Sbornik 68 (1) (1991) 181-203. | MR | Zbl
,[29] Hyperbolic tori and asymptotic surfaces in Hamiltonian systems, Russian J. Math. Phys. 2 (1) (1994) 93-110. | MR | Zbl
,[30] Introduction to hyperbolic dynamics, in: , (Eds.), Real and Complex Dynamical Systems, NATO Adv. Sci. Inst. Ser. C Math. and Phys. Sciences, 464, Kluwer Academic, Dordrecht, 1995, pp. 265-291. | MR | Zbl
,Cité par Sources :