A new method for measuring the splitting of invariant manifolds
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 34 (2001) no. 2, pp. 159-221.
@article{ASENS_2001_4_34_2_159_0,
     author = {Sauzin, David},
     title = {A new method for measuring the splitting of invariant manifolds},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {159--221},
     publisher = {Elsevier},
     volume = {Ser. 4, 34},
     number = {2},
     year = {2001},
     doi = {10.1016/s0012-9593(00)01063-6},
     mrnumber = {1841877},
     zbl = {0987.37061},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/s0012-9593(00)01063-6/}
}
TY  - JOUR
AU  - Sauzin, David
TI  - A new method for measuring the splitting of invariant manifolds
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2001
SP  - 159
EP  - 221
VL  - 34
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/s0012-9593(00)01063-6/
DO  - 10.1016/s0012-9593(00)01063-6
LA  - en
ID  - ASENS_2001_4_34_2_159_0
ER  - 
%0 Journal Article
%A Sauzin, David
%T A new method for measuring the splitting of invariant manifolds
%J Annales scientifiques de l'École Normale Supérieure
%D 2001
%P 159-221
%V 34
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/s0012-9593(00)01063-6/
%R 10.1016/s0012-9593(00)01063-6
%G en
%F ASENS_2001_4_34_2_159_0
Sauzin, David. A new method for measuring the splitting of invariant manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 34 (2001) no. 2, pp. 159-221. doi : 10.1016/s0012-9593(00)01063-6. https://www.numdam.org/articles/10.1016/s0012-9593(00)01063-6/

[1] Arnol'D V.I, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR 156 (1964) 9-12, (in Russian). [English translation: Soviet Math. Dokl. 5 (1964) 581-585]. | Zbl

[2] Bott R, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (2) (1982) 331-358. | MR | Zbl

[3] Bruno A.D, Local Methods in Nonlinear Differential Equations, Springer-Verlag, Berlin, 1989. | MR | Zbl

[4] Delshams A, Gelfreich V.G, Jorba À, Seara T.M, Exponentially small splitting of separatrices under fast quasi-periodic forcing, Comm. Math. Phys. 189 (1997) 35-71. | MR | Zbl

[5] Delshams A, Gutiérrez P, Homoclinic orbits to invariant tori in Hamiltonian systems, in: Jones C, Wiggins S, Khibnik A, Dumortier F, Terman D (Eds.), Multiple-Time-Scale Dynamical Systems, IMA Vol. in Math. and its Appl., Springer-Verlag, Berlin, 1998. | MR | Zbl

[6] Delshams A, Seara T.M, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Comm. Math. Phys. 150 (1992) 433-463. | MR | Zbl

[7] Delshams A, Seara T.M, Splitting of separatrices in Hamiltonian systems with one and half degrees of freedom, Math. Phys. Elec. J. 3 (1997), paper 4. | MR | Zbl

[8] Écalle J, Six lectures on transseries, analysable functions and the constructive proof of Dulac's conjecture, in: Schlomiuk D (Ed.), Bifurcations and Periodic Orbits of Vector Fields, Kluwer Academic, Dordrecht, 1993, pp. 75-184. | MR | Zbl

[9] Eliasson L.H, Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Bras. Mat. 25 (1) (1994) 57-76. | MR | Zbl

[10] Fruchard A, Schäfke R, Exponentially small splitting of separatrices for difference equations with small step size, J. Dynam. Control Syst. 2 (2) (1996) 193-238. | MR | Zbl

[11] Gallavotti G, Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable systems. A review, Rev. Math. Phys. 6 (3) (1994) 343-411. | MR | Zbl

[12] Gallavotti G, Gentile G, Mastropietro V, Melnikov's approximation dominance. Some examples, Rev. Math. Phys. 11 (4) (1999) 451-461. | MR | Zbl

[13] Gelfreich V.G, Melnikov method and exponentially small splitting of separatrices, Physica D 101 (1997) 227-248. | MR | Zbl

[14] Graff S.M, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations 15 (1974) 1-69. | MR | Zbl

[15] Hirsch M.W, Pugh C.C, Shub M, Invariant Manifolds, Lect. Notes in Math., 583, Springer-Verlag, Berlin, 1977. | MR | Zbl

[16] Lazutkin V.F, Splitting of separatrices for the Chirikov's standard map, Preprint VINITI 6372-84, 1984, (in Russian). | MR | Zbl

[17] Lochak P, Effective speed of Arnol'd diffusion and small denominators, Phys. Lett. A 143 (1990) 39-42. | MR

[18] Lochak P, Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys 47 (1992) 57-133. | MR | Zbl

[19] Lochak P, Hamiltonian perturbation theory: periodic orbits, resonances and intermittency, Nonlinearity 6 (1993) 885-904. | MR | Zbl

[20] Lochak P, Tores invariants à torsion évanescente dans les systèmes hamiltoniens proches de l'intégrable, C.R. Acad. Sci. Paris, Série I 327 (1998) 833-836. | MR | Zbl

[21] Lochak P, Marco J.-P, Sauzin D, On the splitting of the invariant manifolds in multidimensional near-integrable Hamiltonian systems, Prépublication 220 de l'Institut de mathématiques de Jussieu, 1999. | Zbl

[22] Poincaré H, Les méthodes nouvelles de la mécanique céleste, Vol. 2, Gauthier-Villars, Paris, 1893. | JFM | Zbl

[23] Popov G, Invariant tori, effective stability and quasimodes with exponentially small error terms, Preprint, 1999. | Zbl

[24] Pöschel J, Nekhoroshev estimates for quasi-convex Hamiltonian sytems, Math. Z. 213 (1993) 187-216. | EuDML | MR | Zbl

[25] Rudnev M, Wiggins S, Existence of exponentially small separatrix splittings and homoclinic connections between whiskered tori in weakly hyperbolic near-integrable Hamiltonian systems, Physica D 114 (1998) 3-80. | MR | Zbl

[26] Sauzin D, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé, Ann. Inst. Fourier 45 (1995) 453-511. | EuDML | Numdam | MR | Zbl

[27] Simó C, Averaging under fast quasiperiodic forcing, in: Seimenis J (Ed.), Hamiltonian Mechanics: Integrability and Chaotic Behaviour, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum Press, New York, 1994, pp. 13-34. | MR

[28] Treschev D.V, A mechanism for the destruction of resonance tori of Hamiltonian systems, Math. USSR-Sbornik 68 (1) (1991) 181-203. | MR | Zbl

[29] Treschev D.V, Hyperbolic tori and asymptotic surfaces in Hamiltonian systems, Russian J. Math. Phys. 2 (1) (1994) 93-110. | MR | Zbl

[30] Yoccoz J.-C, Introduction to hyperbolic dynamics, in: Branner B, Hjorth P (Eds.), Real and Complex Dynamical Systems, NATO Adv. Sci. Inst. Ser. C Math. and Phys. Sciences, 464, Kluwer Academic, Dordrecht, 1995, pp. 265-291. | MR | Zbl

  • Barrabés, E.; Borondo, F.; Fontich, E.; Martín, P.; Ollé, M. A numerical study of the scattering in the He-Cu model with a Morse potential: Parabolic manifolds and exponentially small phenomena, Communications in Nonlinear Science and Numerical Simulation, Volume 139 (2024), p. 108260 | DOI:10.1016/j.cnsns.2024.108260
  • Baldomá, Inmaculada; M-Seara, Tere; Moreno, Román Splitting of Separatrices for Rapid Degenerate Perturbations of the Classical Pendulum, SIAM Journal on Applied Dynamical Systems, Volume 23 (2024) no. 2, p. 1159 | DOI:10.1137/23m1550992
  • Baldomá, Inmaculada; Giralt, Mar; Guardia, Marcel Breakdown of homoclinic orbits to L3 in the RPC3BP (I). Complex singularities and the inner equation, Advances in Mathematics, Volume 408 (2022), p. 108562 | DOI:10.1016/j.aim.2022.108562
  • Delshams, Amadeu; Gonchenko, Marina; Gutiérrez, Pere Exponentially Small Splitting of Separatrices Associated to 3D Whiskered Tori with Cubic Frequencies, Communications in Mathematical Physics, Volume 378 (2020) no. 3, p. 1931 | DOI:10.1007/s00220-020-03832-y
  • Enciso, Alberto; Luque, Alejandro; Peralta-Salas, Daniel Stationary Phase Methods and the Splitting of Separatrices, Communications in Mathematical Physics, Volume 368 (2019) no. 3, p. 1297 | DOI:10.1007/s00220-019-03364-0
  • Baldomá, I.; Castejón, O.; Seara, T. M. Breakdown of a 2D Heteroclinic Connection in the Hopf-Zero Singularity (I), Journal of Nonlinear Science, Volume 28 (2018) no. 5, p. 1551 | DOI:10.1007/s00332-018-9458-x
  • Delshams, Amadeu; Gonchenko, Marina; Gutiérrez, Pere Exponentially Small Splitting of Separatrices and Transversality Associated to Whiskered Tori with Quadratic Frequency Ratio, SIAM Journal on Applied Dynamical Systems, Volume 15 (2016) no. 2, p. 981 | DOI:10.1137/15m1032776
  • Gutiérrez, Pere; Gonchenko, Marina; Delshams, Amadeu Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies, Electronic Research Announcements in Mathematical Sciences, Volume 21 (2014) no. 0, p. 41 | DOI:10.3934/era.2014.21.41
  • Delshams, Amadeu; Gonchenko, Marina; Gutiérrez, Pere Continuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio, Regular and Chaotic Dynamics, Volume 19 (2014) no. 6, p. 663 | DOI:10.1134/s1560354714060057
  • Guardia, Marcel Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 7, p. 2829 | DOI:10.3934/dcds.2013.33.2829
  • Delshams, Amadeu; Gutiérrez, Pere; Pacha, Juan R. Transversality of homoclinic orbits to hyperbolic equilibria in a Hamiltonian system, via the Hamilton–Jacobi equation, Physica D: Nonlinear Phenomena, Volume 243 (2013) no. 1, p. 64 | DOI:10.1016/j.physd.2012.09.009
  • Guardia, Marcel; Martín, Pau; Seara, Tere M. Homoclinic Solutions to Infinity and Oscillatory Motions in the Restricted Planar Circular Three Body Problem, Progress and Challenges in Dynamical Systems, Volume 54 (2013), p. 265 | DOI:10.1007/978-3-642-38830-9_16
  • Guardia, Marcel; Seara, Tere M Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation, Nonlinearity, Volume 25 (2012) no. 5, p. 1367 | DOI:10.1088/0951-7715/25/5/1367
  • Zhang, Ke Speed of Arnold diffusion for analytic Hamiltonian systems, Inventiones mathematicae, Volume 186 (2011) no. 2, p. 255 | DOI:10.1007/s00222-011-0319-6
  • Stenlund, Mikko An expansion of the homoclinic splitting matrix for the rapidly, quasiperiodically, forced pendulum, Journal of Mathematical Physics, Volume 51 (2010) no. 7 | DOI:10.1063/1.3398483
  • Guardia, Marcel; Olivé, Carme; Seara, Tere M. Exponentially Small Splitting for the Pendulum: A Classical Problem Revisited, Journal of Nonlinear Science, Volume 20 (2010) no. 5, p. 595 | DOI:10.1007/s00332-010-9068-8
  • Baldomá, I The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems, Nonlinearity, Volume 19 (2006) no. 6, p. 1415 | DOI:10.1088/0951-7715/19/6/011
  • Delshams, A.; Gutierrez, P. Exponentially Small Splitting of Separatrices for Whiskered Tori in Hamiltonian Systems, Journal of Mathematical Sciences, Volume 128 (2005) no. 2, p. 2726 | DOI:10.1007/s10958-005-0224-x

Cité par 18 documents. Sources : Crossref