@article{ASENS_2000_4_33_2_181_0, author = {Gornet, Ruth and Mast, Maura B.}, title = {The length spectrum of riemannian two-step nilmanifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {181--209}, publisher = {Elsevier}, volume = {Ser. 4, 33}, number = {2}, year = {2000}, doi = {10.1016/s0012-9593(00)00111-7}, mrnumber = {2001d:58042}, zbl = {0968.53036}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(00)00111-7/} }
TY - JOUR AU - Gornet, Ruth AU - Mast, Maura B. TI - The length spectrum of riemannian two-step nilmanifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2000 SP - 181 EP - 209 VL - 33 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(00)00111-7/ DO - 10.1016/s0012-9593(00)00111-7 LA - en ID - ASENS_2000_4_33_2_181_0 ER -
%0 Journal Article %A Gornet, Ruth %A Mast, Maura B. %T The length spectrum of riemannian two-step nilmanifolds %J Annales scientifiques de l'École Normale Supérieure %D 2000 %P 181-209 %V 33 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(00)00111-7/ %R 10.1016/s0012-9593(00)00111-7 %G en %F ASENS_2000_4_33_2_181_0
Gornet, Ruth; Mast, Maura B. The length spectrum of riemannian two-step nilmanifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 2, pp. 181-209. doi : 10.1016/s0012-9593(00)00111-7. http://www.numdam.org/articles/10.1016/s0012-9593(00)00111-7/
[1] Collectively Compact Operator Approximation Theory and Applications to Integral Equations, Prentice Hall, 1971. | MR | Zbl
,[2] Spectral Geometry : Direct and Inverse Problems, Lecture Notes in Mathematics, Vol. 1207, Springer, Berlin, 1980. | MR | Zbl
,[3] Le spectre des variétés Riemanniennes, Rev. Roum. Math. Pures et Appl. 13 (1968) 915-931. | MR | Zbl
,[4] Le Spectre d'Une Variété Riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer, Berlin, 1971. | MR | Zbl
, , ,[5] Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lecture Notes in Mathematics, Vol. 1598, Springer, Berlin, 1995. | MR | Zbl
, , ,[6] Manifolds all of Whose Geodesics are Closed, Springer, Berlin, 1978. | MR | Zbl
,[7]
, Private communication.[8] Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, Vol. 106, Birkhäuser, 1992. | MR | Zbl
,[9] Spectre du Laplacian et longueur des géodesiques periodiques I, II, Compositio Math. 27 (1973) 83-106, 159-184. | EuDML | Numdam | MR | Zbl
,[10] A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992) 139-142. | MR | Zbl
, ,[11] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1977) 39-79. | EuDML | MR | Zbl
, ,[12] Geometry of two-step nilpotent groups with a left invariant metric, Ann. Scien. de l'Ecole Norm. Sup. 27 (1994) 611-660. | EuDML | Numdam | MR | Zbl
,[13] Geometry of two-step nilpotent groups with a left invariant metric II, Trans. Amer. Math. Soc. 343 (1994) 805-828. | MR | Zbl
,[14] Rigidité du flot géodésique de certaines nilvariétés de rang deux, in : Séminaire de Théorie Spectrale et Géométrie (Grenoble), 1996-1997, pp. 25-36. | EuDML | Numdam | MR | Zbl
,[15] Conjugaison géodésique des nilvariétés de rang deux, Journal of Lie Theory (1999) (to appear). | Zbl
,[16] Matrix Polynomials, Academic Press, 1982. | MR | Zbl
, , ,[17] The Laplace spectra versus the length spectra of Riemannian manifolds, Contemporary Math. 51 (1986) 63-79. | MR | Zbl
,[18] Isospectral closed Riemannian manifolds which are not locally isometric, J. Differential Geom. 37 (1993) 639-649. | MR | Zbl
,[19] Isospectral closed Riemannian manifolds which are not locally isometric : II, in : Brooks R., Gordon C.S., Perry P.(Eds.), Contemporary Mathematics : Geometry of the Spectrum, Vol. 173, Amer. Math. Soc., 1994, pp. 121-131. | MR | Zbl
,[20] Isospectral deformations of closed Riemannian manifolds with different scalar curvature, Ann. Inst. Fourier (Grenoble) 48 (1998) 593-607. | EuDML | Numdam | MR | Zbl
, , , , ,[21] The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33 (1986) 253-271. | MR | Zbl
, ,[22] Continuous families of isospectral Riemannian manifolds which are not locally isometric, J. Differential Geom. 47 (1997) 504-529. | MR | Zbl
, ,[23] The length spectrum and representation theory on two and three-step nilpotent Lie groups, in : Brooks R., Gordon C.S., Perry P. (Eds.), Contemporary Mathematics : Geometry of the Spectrum, Vol. 173, Amer. Math. Soc., 1994, pp. 133-156. | MR | Zbl
,[24] A new construction of isospectral Riemannian nilmanifolds with examples, Michigan Math. J. 43 (1996) 159-188. | MR | Zbl
,[25] The marked length spectrum vs. the p-form spectrum of Riemannian nilmanifolds, Comment. Math. Helv. 71 (1996) 297-329. | EuDML | MR | Zbl
,[26] Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene, Comment. Math. Helv. 30 (1955) 20-62. | EuDML | MR | Zbl
,[27] Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen I, Math. Ann. 138 (1959) 1-26 ; II, Math. Ann. 142 (1961) 385-398 ; Nachtrag zu II, Math. Ann. 143 (1961) 463-464. | EuDML | MR | Zbl
,[28] Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11 (1981) 127-136. | MR | Zbl
,[29] On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983) 35-42. | MR | Zbl
,[30] Lie groups of Heisenberg type, in : Conference on Differential Geometry on Homogeneous Spaces (Turin 1983), Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), 1984, pp. 117-130. | MR | Zbl
,[31] Perturbation Theory for Linear Operators, Classics in Mathematics, Springer, Berlin, 1984.
,[32] A Short Introduction to Perturbation Theory for Linear Operators, Springer, Berlin, 1982. | MR | Zbl
,[33] Smoothly closed geodesics in 2-step nilmanifolds, Indiana Univ. Math. J. 45 (1996) 1-14. | MR | Zbl
, ,[34] Closed geodesics in 2-step nilmanifolds, Indiana Univ. Math. J. 43 (1994) 885-911. | MR | Zbl
,[35] Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. USA 51 (1964) 542. | MR | Zbl
,[36] Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (1976) 293-329. | MR | Zbl
,[37] Déformations L-isospectrales sur les nilvariétés de rang deux, C. R. Acad. Sci. Paris, Série I 315 (1992) 821-823. | MR | Zbl
,[38] Calcul du spectre d'une nilvariété de rang deux et applications, Trans. Amer. Math. Soc. 339 (1993) 433-461. | MR | Zbl
,[39] Une formule de Poisson pour les variétés de Heisenberg, Duke Math. J. 73 (1994) 79-95. | MR | Zbl
,[40] Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebeite, Vol. 68, Springer, Berlin, 1972. | MR | Zbl
,[41] Continuous families of isospectral metrics on simply connected manifolds, Ann. of Math. (2) 149 (1) (1999) 287-308. | EuDML | MR | Zbl
,[42] Locally nonisometric yet super isospectral spaces, Geom. Funct. Anal. 9 (1) (1999) 185-214. | MR | Zbl
,[43] Eigenvalues of the Laplacian of Riemannian manifolds, Tohoku Math. J. 25 (1973) 391-403. | MR | Zbl
,[44] Lie Groups, Lie Algebras, and their Representations, Graduate Texts in Mathematics, Vol. 102, Springer, Berlin, 1984. | MR | Zbl
,[45] Curvature in nilpotent Lie groups, Proc. Amer. Math. Soc. 15 (1964) 271-274. | MR | Zbl
,Cité par Sources :