Admettant la conjecture abc, Silverman a montré que, pour tout entier , il existe au moins nombres premiers tels que . Admettant toujours la conjecture abc, nous montrons ici que, pour tous entiers et donnés, il y a encore au moins nombres premiers tels que et . Ceci améliore un résultat récent de Chen et Ding.
Assuming the abc conjecture, Silverman proved that, for any given positive integer , there are primes such that . In this paper, we show that, for any given integers and , there still are primes satisfying and , under the assumption of the abc conjecture. This improves a recent result of Chen and Ding.
Accepté le :
Publié le :
@article{CRMATH_2019__357_6_483_0, author = {Ding, Yuchen}, title = {Non-Wieferich primes under the abc conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--486}, publisher = {Elsevier}, volume = {357}, number = {6}, year = {2019}, doi = {10.1016/j.crma.2019.05.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2019.05.007/} }
TY - JOUR AU - Ding, Yuchen TI - Non-Wieferich primes under the abc conjecture JO - Comptes Rendus. Mathématique PY - 2019 SP - 483 EP - 486 VL - 357 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2019.05.007/ DO - 10.1016/j.crma.2019.05.007 LA - en ID - CRMATH_2019__357_6_483_0 ER -
Ding, Yuchen. Non-Wieferich primes under the abc conjecture. Comptes Rendus. Mathématique, Tome 357 (2019) no. 6, pp. 483-486. doi : 10.1016/j.crma.2019.05.007. http://www.numdam.org/articles/10.1016/j.crma.2019.05.007/
[1] Non-Wieferich primes in arithmetic progressions, Proc. Amer. Math. Soc., Volume 145 (2017), pp. 1833-1836
[2] The abc conjecture and non-Wieferich primes in arithmetic progressions, J. Number Theory, Volume 133 (2013), pp. 1809-1813
[3] Wieferich's criterion and the abc-conjecture, J. Number Theory, Volume 30 (1988), pp. 226-237
[4] Zum letzten Fermatschen Theorem, J. Reine Angew. Math., Volume 136 (1909), pp. 293-302 (in German)
Cité par Sources :