Nous prouvons une inégalité de Lifchitz pour la densité d'états intégrée pour des opérateurs de Schrödinger avec potentiel aléatoire de breather. Plus précisément, le potentiel est composé de translations d'un potentiel simple site, qui est une fonction caractéristique de l'ensemble tA, où et est mesurable. L'enjeu de ce modèle réside dans le fait que, puisque nous n'assumons pas que la partie A soit étoilée, le potentiel est une fonction non monotone de la variable t. De plus, la dépendance est non linéaire et non différentiable.
We prove a Lifshitz tail bound on the integrated density of states of random breather Schrödinger operators. The potential is composed of translated single-site potentials. The single-site potential is an indicator function of the set tA where t is from the unit interval and A is a measurable set contained in the unit cell. The challenges of this model are that, since A is not assumed to be star-shaped, the dependence of the potential on the parameter t is not monotone. It is also non-linear and not differentiable.
Accepté le :
Publié le :
@article{CRMATH_2017__355_12_1307_0, author = {Schumacher, Christoph and Veseli\'c, Ivan}, title = {Lifshitz tails for {Schr\"odinger} operators with random breather potential}, journal = {Comptes Rendus. Math\'ematique}, pages = {1307--1310}, publisher = {Elsevier}, volume = {355}, number = {12}, year = {2017}, doi = {10.1016/j.crma.2017.11.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2017.11.007/} }
TY - JOUR AU - Schumacher, Christoph AU - Veselić, Ivan TI - Lifshitz tails for Schrödinger operators with random breather potential JO - Comptes Rendus. Mathématique PY - 2017 SP - 1307 EP - 1310 VL - 355 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2017.11.007/ DO - 10.1016/j.crma.2017.11.007 LA - en ID - CRMATH_2017__355_12_1307_0 ER -
%0 Journal Article %A Schumacher, Christoph %A Veselić, Ivan %T Lifshitz tails for Schrödinger operators with random breather potential %J Comptes Rendus. Mathématique %D 2017 %P 1307-1310 %V 355 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2017.11.007/ %R 10.1016/j.crma.2017.11.007 %G en %F CRMATH_2017__355_12_1307_0
Schumacher, Christoph; Veselić, Ivan. Lifshitz tails for Schrödinger operators with random breather potential. Comptes Rendus. Mathématique, Tome 355 (2017) no. 12, pp. 1307-1310. doi : 10.1016/j.crma.2017.11.007. http://www.numdam.org/articles/10.1016/j.crma.2017.11.007/
[1] Low lying eigenvalues of randomly curved quantum waveguides, J. Funct. Anal., Volume 265 (2013) no. 11, pp. 2877-2909
[2] Large deviations and Lifshitz singularity of the integrated density of states of random Hamitonians, Commun. Math. Phys., Volume 89 (1983), pp. 27-40
[3] Lifshitz tails for a class of Schrödinger operators with random breather-type potential, Lett. Math. Phys., Volume 94 (2010) no. 1, pp. 27-39
[4] Localization for the random displacement model, Duke Math. J., Volume 161 (2012) no. 4, pp. 587-621
[5] Lifschitz singularities for periodic operators plus random potentials, J. Stat. Phys., Volume 49 (1987) no. 5–6, pp. 1181-1190
[6] C. Schumacher, I. Veselić, Anderson localization and Lifshitz asymptotics for monotone random breather potentials, Preprint.
[7] Lifschitz tails for the Anderson model, J. Stat. Phys., Volume 38 (1985), pp. 65-76
[8] Lehrbuch der mathematischen Physik, Quantenmechanik von Atomen und Molekülen, vol. 3, Springer-Verlag, Vienna, 1994
[9] Scale-free uncertainty principles and Wegner estimates for random breather potentials, C. R. Math., Volume 353 (2015) no. 10, pp. 919-923
[10] Scale-free unique continuation principle, eigenvalue lifting and Wegner estimates for random Schrödinger operators, Anal. PDE (2017) (Preprint in press) | arXiv
[11] Conditional Wegner estimate for the standard random breather potential, J. Stat. Phys., Volume 161 (2015) no. 4, pp. 902-914
Cité par Sources :