Optimal control
Time optimal sampled-data controls for the heat equation
[Contrôle optimal en temps échantillonné pour l'équation de la chaleur]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 12, pp. 1252-1290.

Nous décrivons ici, dans un premier temps, un problème de contrôle optimal en temps pour l'équation de la chaleur, avec contrôles d'échantillons. Nous l'utilisons ensuite pour approcher un problème de contrôle optimal en temps, avec contrôles distribués. L'étude d'un tel problème de contrôle optimal en temps échantillonné n'est pas facile, car il peut exister une infinité de contrôles optimaux. Nous montrons qu'il existe des liens entre ce problème, un problème de contrôle échantillonné de norme minimale et un problème de minimisation. Nous obtenons divers résultats sur ces problèmes, qui nous permettent, non seulement d'établir des estimations d'erreur pour le temps et les contrôles optimaux dans le passage entre le problème de contrôle optimal en temps échantillonné et le problème de contrôle optimal en temps distribué, en fonction de la période d'échantillonnage, mais aussi de montrer que ces estimations sont, dans un certain sens, optimales.

In this paper, we first design a time optimal control problem for the heat equation with sampled-data controls, and then use it to approximate a time optimal control problem for the heat equation with distributed controls.

The study of such a time optimal sampled-data control problem is not easy, because it may have infinitely many optimal controls. We find connections among this problem, a minimal norm sampled-data control problem and a minimization problem, and obtain some properties on these problems. Based on these, we not only build up error estimates for optimal time and optimal controls between the time optimal sampled-data control problem and the time optimal distributed control problem, in terms of the sampling period, but we also prove that such estimates are optimal in some sense.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.11.006
Wang, Gengsheng 1, 2 ; Yang, Donghui 3 ; Zhang, Yubiao 1

1 Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China
2 School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
3 School of Mathematical Sciences, Central South University, Changsha, 410075, China
@article{CRMATH_2017__355_12_1252_0,
     author = {Wang, Gengsheng and Yang, Donghui and Zhang, Yubiao},
     title = {Time optimal sampled-data controls for the heat equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1252--1290},
     publisher = {Elsevier},
     volume = {355},
     number = {12},
     year = {2017},
     doi = {10.1016/j.crma.2017.11.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.11.006/}
}
TY  - JOUR
AU  - Wang, Gengsheng
AU  - Yang, Donghui
AU  - Zhang, Yubiao
TI  - Time optimal sampled-data controls for the heat equation
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1252
EP  - 1290
VL  - 355
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.11.006/
DO  - 10.1016/j.crma.2017.11.006
LA  - en
ID  - CRMATH_2017__355_12_1252_0
ER  - 
%0 Journal Article
%A Wang, Gengsheng
%A Yang, Donghui
%A Zhang, Yubiao
%T Time optimal sampled-data controls for the heat equation
%J Comptes Rendus. Mathématique
%D 2017
%P 1252-1290
%V 355
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.11.006/
%R 10.1016/j.crma.2017.11.006
%G en
%F CRMATH_2017__355_12_1252_0
Wang, Gengsheng; Yang, Donghui; Zhang, Yubiao. Time optimal sampled-data controls for the heat equation. Comptes Rendus. Mathématique, Tome 355 (2017) no. 12, pp. 1252-1290. doi : 10.1016/j.crma.2017.11.006. http://www.numdam.org/articles/10.1016/j.crma.2017.11.006/

[1] Ackermann, J. Sampled-Data Control Systems: Analysis and Synthesis, Robust System Design, Spring-Verlag, 1985

[2] Apraiz, J.; Escauriaza, L.; Wang, G.; Zhang, C. Observability inequalities and measurable sets, J. Eur. Math. Soc., Volume 16 (2014), pp. 2433-2475

[3] Astuti, P.; Corless, M.; Williamson, D. On the convergence of sampled data nonlinear systems, Differ. Equ. (1997), pp. 201-210

[4] Bini, E.; Buttazzo, G. The optimal sampling pattern for linear control systems, IEEE Trans. Autom. Control, Volume 59 (2014), pp. 78-90

[5] Bourdin, L.; Trélat, E. Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales, SIAM J. Control Optim., Volume 51 (2013), pp. 3781-3813

[6] Bourdin, L.; Trélat, E. Optimal sampled-data control, and generalizations of time scales, Math. Control Relat. Fields, Volume 6 (2016), pp. 53-94

[7] Bourdin, L.; Trélat, E. Linear-quadratic optimal sampled-data control problems: convergence result and Riccati theory, Automatica, Volume 79 (2017), pp. 273-281

[8] Chen, T.; Francis, B. Optimal Sampled-Data Control Systems, Springer-Verlag, 1995

[9] Fabre, C.; Puel, J.; Zuazua, E. Approximate controllability of the semilinear heat equation, Proc. R. Soc. Edinb., Sect. A, Volume 125 (1995), pp. 31-61

[10] Fattorini, H.O. Time-optimal control of solutions of operational differential equations, SIAM J. Control Optim., Volume 2 (1964), pp. 54-59

[11] Fattorini, H.O. Infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems, North-Holl. Math. Stud., vol. 201, Elsevier, Amsterdam, 2005

[12] Fernández-Cara, E.; Zuazua, E. Null and approximate controllability for weakly blowing-up semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000), pp. 583-616

[13] Franklin, G.; Ragazzini, J. Sampled-Data Control Systems, The McGraw–Hill Book Company, Inc., 1958

[14] Geromel, J.; Souza, M. On an LMI approach to optimal sampled-data state feedback control design, Int. J. Control, Volume 88 (2015), pp. 2369-2379

[15] Gong, W.; Yan, N. Finite element method and its error estimates for the time optimal controls of heat equation, Int. J. Numer. Anal. Model., Volume 13 (2016), pp. 261-275

[16] Gozzi, F.; Loreti, P. Regularity of the minimal time function and minimal energy problems: the linear case, SIAM J. Control Optim., Volume 37 (1999), pp. 1195-1221

[17] Guo, B.; Xu, Y.; Yang, D. Optimal actuator location of minimum norm controls for heat equation with general controlled domain, J. Differ. Equ., Volume 261 (2016), pp. 3588-3614

[18] Guo, B.; Yang, D. Optimal actuator location for time and norm optimal control of null controllable heat equation, Math. Control Signals Syst., Volume 27 (2015), pp. 23-48

[19] Ichikawa, A.; Katayama, H. Linear Time Varying Systems and Sampled-Data Systems, Springer-Verlag, 2001

[20] Imura, J. Optimal control of sampled-data piecewise affine systems, Automatica J. IFAC, Volume 40 (2004), pp. 661-669

[21] Kunisch, K.; Wang, L. Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints, J. Math. Anal. Appl., Volume 395 (2012), pp. 114-130

[22] Kunisch, K.; Wang, L. Time optimal control of the heat equation with pointwise control constraints, ESAIM Control Optim. Calc. Var., Volume 19 (2013), pp. 460-485

[23] Landau, I.; Zito, G. Digital Control Systems: Design, Identification and Implementation, Springer-Verlag, 2006

[24] Li, X.; Yong, J. Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995

[25] Lin, F. A uniqueness theorem for parabolic equations, Commun. Pure Appl. Math., Volume 43 (1990), pp. 127-136

[26] Lohéac, J.; Zuazua, E. Norm saturating property of time optimal controls for wave-type equations, IFAC-PapersOnLine, Volume 49 (2016), pp. 37-42

[27] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983

[28] Phung, K.D.; Wang, G.; Xu, Y. Impulse output rapid stabilization for heat equations, J. Differ. Equ., Volume 263 (2017), pp. 5012-5041

[29] Phung, K.D.; Wang, G.; Zhang, X. On the existence of time optimal controls for linear evolution equations, Discrete Contin. Dyn. Syst., Ser. B, Volume 8 (2007), pp. 925-941

[30] Phung, K.D.; Wang, L.; Zhang, C. Bang-bang property for time optimal control of semilinear heat equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014), pp. 477-499

[31] Shim, H.; Teel, A. Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback, Automatica, Volume 39 (2003), pp. 441-454

[32] Trélat, E.; Wang, L.; Zhang, Y. Impulse and sampled-data optimal control of heat equations, and error estimates, SIAM J. Control Optim., Volume 54 (2016), pp. 2787-2819

[33] Tucsnak, M.; Wang, G.; Wu, C. Perturbations of time optimal control problems for a class of abstract parabolic systems, SIAM J. Control Optim., Volume 54 (2016), pp. 2965-2991

[34] Wang, G. L-null controllability for the heat equation and its consequences for the time optimal control problem, SIAM J. Control Optim., Volume 47 (2008), pp. 1701-1720

[35] Wang, G.; Wang, M.; Zhang, Y. Observability and unique continuation inequalities for the Schrödinger equation, J. Eur. Math. Soc. (2017) (in press) | arXiv

[36] Wang, G.; Xu, Y. Equivalence of three different kinds of optimal control problems for heat equations and its applications, SIAM J. Control Optim., Volume 51 (2013), pp. 848-880

[37] Wang, G.; Xu, Y.; Zhang, Y. Attainable subspaces and the bang- bang property of time optimal controls for heat equations, SIAM J. Control Optim., Volume 51 (2015), pp. 592-621

[38] Wang, G.; Zhang, C. Observability inequalities from measurable sets for some evolution equations, SIAM J. Control Optim., Volume 55 (2017), pp. 1862-1886

[39] Wang, G.; Zhang, Y. Decompositions and bang–bang properties, Math. Control Relat. Fields, Volume 7 (2017), pp. 73-170

[40] Wang, G.; Zheng, G. An approach to the optimal time for a time optimal control problem of an internally controlled heat equation, SIAM J. Control Optim., Volume 50 (2012), pp. 601-628

[41] Wang, G.; Zuazua, E. On the equivalence of minimal time and minimal norm controls for internally controlled heat equations, SIAM J. Control Optim., Volume 50 (2012), pp. 2938-2958

[42] Yu, H. Approximation of time optimal controls for heat equations with perturbations in the system potential, SIAM J. Control Optim., Volume 52 (2014), pp. 1663-1692

[43] Zhang, C. The time optimal control with constraints of the rectangular type for linear time-varying ODEs, SIAM J. Control Optim., Volume 51 (2013), pp. 1528-1542

Cité par Sources :