Functional analysis/Dynamical systems
The Ramsey property for Banach spaces and Choquet simplices, and applications
[La propriété de Ramsey des espaces de Banach et des simplexes de Choquet, et applications]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 12, pp. 1242-1246.

Nous montrons que la classe des espaces de Banach de dimension finie et la classe des simplexes de Choquet de dimension finie ont la propriété de Ramsey. En guise d'application, nous montrons que le groupe Aut(G) des isométries linéaires surjectives de l'espace de Gurarij G est extrêmement moyennable, et que l'action canonique Aut(P)P est le flot minimal universel du groupe Aut(P) des homéomorphismes affines du simplexe de Poulsen P. Ceci répond aux questions de Melleray–Tsankov et Conley–Törnquist.

We show that the class of finite-dimensional Banach spaces and the class of finite-dimensional Choquet simplices have the Ramsey property. As an application, we show that the group Aut(G) of surjective linear isometries of the Gurarij space G is extremely amenable, and that the canonical action Aut(P)P is the universal minimal flow of the group Aut(P) of affine homeomorphisms of the Poulsen simplex P. This answers questions of Melleray–Tsankov and Conley–Törnquist.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.11.001
Bartošová, Dana 1 ; Lopez-Abad, Jordi 2 ; Lupini, Martino 3 ; Mbombo, Brice 4

1 Department of Mathematical Sciences, Carnegie Mellon University, PA, USA
2 Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED, 28040 Madrid, Spain
3 Mathematics Department, California Institute of Technology, 1200 E. California Blvd, MC 253-37, Pasadena, CA 91125, USA
4 Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
@article{CRMATH_2017__355_12_1242_0,
     author = {Barto\v{s}ov\'a, Dana and Lopez-Abad, Jordi and Lupini, Martino and Mbombo, Brice},
     title = {The {Ramsey} property for {Banach} spaces and {Choquet} simplices, and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1242--1246},
     publisher = {Elsevier},
     volume = {355},
     number = {12},
     year = {2017},
     doi = {10.1016/j.crma.2017.11.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.11.001/}
}
TY  - JOUR
AU  - Bartošová, Dana
AU  - Lopez-Abad, Jordi
AU  - Lupini, Martino
AU  - Mbombo, Brice
TI  - The Ramsey property for Banach spaces and Choquet simplices, and applications
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1242
EP  - 1246
VL  - 355
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.11.001/
DO  - 10.1016/j.crma.2017.11.001
LA  - en
ID  - CRMATH_2017__355_12_1242_0
ER  - 
%0 Journal Article
%A Bartošová, Dana
%A Lopez-Abad, Jordi
%A Lupini, Martino
%A Mbombo, Brice
%T The Ramsey property for Banach spaces and Choquet simplices, and applications
%J Comptes Rendus. Mathématique
%D 2017
%P 1242-1246
%V 355
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.11.001/
%R 10.1016/j.crma.2017.11.001
%G en
%F CRMATH_2017__355_12_1242_0
Bartošová, Dana; Lopez-Abad, Jordi; Lupini, Martino; Mbombo, Brice. The Ramsey property for Banach spaces and Choquet simplices, and applications. Comptes Rendus. Mathématique, Tome 355 (2017) no. 12, pp. 1242-1246. doi : 10.1016/j.crma.2017.11.001. http://www.numdam.org/articles/10.1016/j.crma.2017.11.001/

[1] Bartosova, D.; Lopez-Abad, J.; Lupini, M.; Mbombo, B. The Ramsey property for Banach spaces, Choquet simplices, and their noncommutative analogs | arXiv

[2] Ben Yaacov, I. Fraïssé limits of metric structures, J. Symb. Log., Volume 80 (2015) no. 1, pp. 100-115

[3] Conley, C.; Törnquist, A. A Fraïssé approach to the Poulsen simplex, Sets and Computations, World Scientific, 2017, pp. 11-24

[4] Glasner, S. Distal and semisimple affine flows, Amer. J. Math., Volume 109 (1987) no. 1, pp. 115-131

[5] Graham, R.L.; Rothschild, B.L. Ramsey's theorem for n-parameter sets, Trans. Amer. Math. Soc., Volume 159 (1971), pp. 257-291

[6] Gromov, M.; Milman, V.D. A topological application of the isoperimetric inequality, Amer. J. Math., Volume 105 (1983) no. 4, pp. 843-854

[7] Gurariĭ, V.I. Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sib. Math. J., Volume 7 (1966), pp. 1002-1013

[8] Herer, W.; Christensen, J.P.R. On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann., Volume 213 (1975), pp. 203-210

[9] Kechris, A.S.; Pestov, V.; Todorcevic, S. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal., Volume 15 (2005) no. 1, pp. 106-189

[10] Kubi, W.; Solecki, S. A proof of uniqueness of the Gurariĭ space, Isr. J. Math., Volume 195 (2013) no. 1, pp. 449-456

[11] Lindenstrauss, J.; Olsen, G.; Sternfeld, Y. The Poulsen simplex, Ann. Inst. Fourier, Volume 28 (1978) no. 1, pp. 91-114

[12] Lupini, M. Fraïssé limits in functional analysis, 2015 | arXiv

[13] Lupini, M. Uniqueness, universality, and homogeneity of the noncommutative Gurarij space, Adv. Math., Volume 298 (2016), pp. 286-324

[14] Melleray, J. Some problems related to the themes of the HIM trimester “Homogeneity and Universality”, Selected Problems Universality Trimester, Hausdorff Institute of Mathematics, Bonn, Germany, 2013

[15] Melleray, J.; Tsankov, T. Extremely amenable groups via continuous logic, 2014 | arXiv

[16] Pestov, V. On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc., Volume 350 (1998) no. 10, pp. 4149-4165

[17] Poulsen, E.T. A simplex with dense extreme points, Ann. Inst. Fourier, Volume 11 (1961), pp. 83-87

Cité par Sources :