Nous nous intéressons à la contrôlabilité exacte à zéro de l'équation sur , avec contrôle u sur ω. Nous démontrons que si ω est le complémentaire d'une bande horizontale, l'équation considérée n'est contrôlable pour aucun temps. L'idée principale est d'interpréter l'inégalité d'observabilité comme une estimation sur les fonctions entières, que nous nions grâce au théorème de Runge. Pour réaliser cette interprétation, nous étudions en particulier la première valeur propre de avec conditions de Dirichlet sur , et en obtenons une estimation assez précise, y compris pour certains n complexes.
We are interested in the exact null controllability of the equation , with control u supported on ω. We show that, when ω does not intersect a horizontal band, the considered equation is never null-controllable. The main idea is to interpret the associated observability inequality as an estimate on polynomials, which Runge's theorem disproves. To that end, we study in particular the first eigenvalue of the operator with Dirichlet conditions on , and we show a quite precise estimation it satisfies, even when n is in some complex domain.
Accepté le :
Publié le :
@article{CRMATH_2017__355_12_1215_0, author = {Koenig, Armand}, title = {Non-null-controllability of the {Grushin} operator in {2D}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1215--1235}, publisher = {Elsevier}, volume = {355}, number = {12}, year = {2017}, doi = {10.1016/j.crma.2017.10.021}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2017.10.021/} }
TY - JOUR AU - Koenig, Armand TI - Non-null-controllability of the Grushin operator in 2D JO - Comptes Rendus. Mathématique PY - 2017 SP - 1215 EP - 1235 VL - 355 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2017.10.021/ DO - 10.1016/j.crma.2017.10.021 LA - en ID - CRMATH_2017__355_12_1215_0 ER -
%0 Journal Article %A Koenig, Armand %T Non-null-controllability of the Grushin operator in 2D %J Comptes Rendus. Mathématique %D 2017 %P 1215-1235 %V 355 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2017.10.021/ %R 10.1016/j.crma.2017.10.021 %G en %F CRMATH_2017__355_12_1215_0
Koenig, Armand. Non-null-controllability of the Grushin operator in 2D. Comptes Rendus. Mathématique, Tome 355 (2017) no. 12, pp. 1215-1235. doi : 10.1016/j.crma.2017.10.021. http://www.numdam.org/articles/10.1016/j.crma.2017.10.021/
[1] Lectures on Exponential Decay of Solution of Second-Order Elliptic Equations, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ, USA, 1982
[2] On efficient analytic continuation of power series, Math. USSR Sb., Volume 52 (1985) no. 1, pp. 21-39
[3] Null controllability of Kolmogorov-type equations, Math. Control Signals Syst., Volume 26 (2014) no. 1, pp. 145-176
[4] Heat equation on the Heisenberg group: observability and applications, J. Differ. Equ., Volume 262 (2017) no. 8, pp. 4475-4521
[5] Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 67-101
[6] Degenerate parabolic operators of Kolmogorov type with a geometric control condition, ESAIM Control Optim. Calc. Var., Volume 21 (2015) no. 2, pp. 487-512
[7] 2d Grushin-type equations: minimal time and null controllable data, J. Differ. Equ., Volume 259 (2015) no. 11, pp. 5813-5845
[8] Null-controllability of hypoelliptic quadratic differential equations, 2016 | arXiv
[9] Null-controllability of non-autonomous Ornstein–Uhlenbeck equations, J. Math. Anal. Appl., Volume 456 (2001) no. 1, pp. 496-524
[10] Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 1-19
[11] Global Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc., Volume 239 (2016) no. 1133
[12] Control and Nonlinearity, Math. Surv. Monogr., vol. 143, American Mathematical Society, Boston, MA, USA, 2007
[13] Resolvent conditions for the control of parabolic equations, J. Funct. Anal., Volume 263 (2012) no. 11, pp. 3641-3673
[14] Controllability of Evolution Equations, Lecture Note Series, vol. 34, Seoul University Press, 1996
[15] B. Helffer, F. Nier, Quantitative analysis of metastability in reversible diffusion Processes via a Witten complex approach: the case with boundary, preprint, 2004, HAL.
[16] Multiples wells in the semi-classical limit I, Commun. Partial Differ. Equ., Volume 9 (1984) no. 4, pp. 337-408
[17] Contrôle exact de l'équation de la chaleur, Commun. Partial Differ. Equ., Volume 20 (1995) no. 1, pp. 335-356
[18] Le calcul des résidus et ses applications à la théorie des fonctions, Gauthier-Villars, 1905
[19] An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer, New York, 2002
[20] On the controllability of anomalous diffusions generated by the fractional laplacian, Math. Control Signals Syst., Volume 18 (2006) no. 3, pp. 260-271
[21] Real and Complex Analysis, McGraw Hill Education, 1986
Cité par Sources :
☆ This work was partially supported by the ERC advanced grant SCAPDE, seventh framework program, agreement No. 320845.