Nous étendons la procédure de quadrature empirique par programmation linéaire proposée dans [9] et par la suite dans [3] au cas où les fonctions à intégrer sont associées à une variété paramétrique. Nous posons un problème de programmation linéaire discret et semi-infini : nous minimisons la fonction objectif, qui est la somme des poids (positifs) de quadrature, qui constitue une norme
We extend the linear program empirical quadrature procedure proposed in [9] and subsequently [3] to the case in which the functions to be integrated are associated with a parametric manifold. We pose a discretized linear semi-infinite program: we minimize as objective the sum of the (positive) quadrature weights, an
Accepté le :
Publié le :
@article{CRMATH_2017__355_11_1161_0, author = {Patera, Anthony T. and Yano, Masayuki}, title = {An {LP} empirical quadrature procedure for parametrized functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1161--1167}, publisher = {Elsevier}, volume = {355}, number = {11}, year = {2017}, doi = {10.1016/j.crma.2017.10.020}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2017.10.020/} }
TY - JOUR AU - Patera, Anthony T. AU - Yano, Masayuki TI - An LP empirical quadrature procedure for parametrized functions JO - Comptes Rendus. Mathématique PY - 2017 SP - 1161 EP - 1167 VL - 355 IS - 11 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2017.10.020/ DO - 10.1016/j.crma.2017.10.020 LA - en ID - CRMATH_2017__355_11_1161_0 ER -
%0 Journal Article %A Patera, Anthony T. %A Yano, Masayuki %T An LP empirical quadrature procedure for parametrized functions %J Comptes Rendus. Mathématique %D 2017 %P 1161-1167 %V 355 %N 11 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2017.10.020/ %R 10.1016/j.crma.2017.10.020 %G en %F CRMATH_2017__355_11_1161_0
Patera, Anthony T.; Yano, Masayuki. An LP empirical quadrature procedure for parametrized functions. Comptes Rendus. Mathématique, Tome 355 (2017) no. 11, pp. 1161-1167. doi : 10.1016/j.crma.2017.10.020. https://www.numdam.org/articles/10.1016/j.crma.2017.10.020/
[1] Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph., Volume 27 (2008) no. 5
[2] An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 667-672
[3] R. DeVore, S. Foucart, G. Petrova, P. Wojtaszczyk, Computing a quantity of interest from observational data, preprint, 2017.
[4] A necessary and sufficient condition for exact sparse recovery by
[5] Sparse and Redundant Representations, Springer, 2010
[6] Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models, Int. J. Numer. Methods Eng., Volume 102 (2015), pp. 1077-1110
[7] A Mathematical Introduction to Compressive Sensing, Birkhäuser, 2013
[8] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations; application to transport and continuum mechanics, Arch. Comput. Methods Eng., Volume 15 (2008), pp. 229-275
[9] Extensions of Gauss quadrature via linear programming, Found. Comput. Math., Volume 15 (2015), pp. 953-971
- First‐Order Empirical Interpolation Method for Real‐Time Solution of Parametric Time‐Dependent Nonlinear PDEs, Numerical Methods for Partial Differential Equations, Volume 41 (2025) no. 3 | DOI:10.1002/num.70006
- Empirical Interscale Finite Element Method (EIFEM) for modeling heterogeneous structures via localized hyperreduction, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 116492 | DOI:10.1016/j.cma.2023.116492
- CECM: A continuous empirical cubature method with application to the dimensional hyperreduction of parameterized finite element models, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 116552 | DOI:10.1016/j.cma.2023.116552
- A hyperreduced reduced basis element method for reduced-order modeling of component-based nonlinear systems, Computer Methods in Applied Mechanics and Engineering, Volume 431 (2024), p. 117254 | DOI:10.1016/j.cma.2024.117254
- Model reduction techniques for parametrized nonlinear partial differential equations, Error Control, Adaptive Discretizations, and Applications, Part 1, Volume 58 (2024), p. 149 | DOI:10.1016/bs.aams.2024.03.005
- An efficient reduced order model for nonlinear transient porous media flow with time-varying injection rates, Finite Elements in Analysis and Design, Volume 241 (2024), p. 104237 | DOI:10.1016/j.finel.2024.104237
- A subspace‐adaptive weights cubature method with application to the local hyperreduction of parameterized finite element models, International Journal for Numerical Methods in Engineering, Volume 125 (2024) no. 24 | DOI:10.1002/nme.7590
- Computations for Sustainability, Quantitative Sustainability (2024), p. 91 | DOI:10.1007/978-3-031-39311-2_7
- On a fast numerical solution of the nonlinear Black-Scholes equation using hyper-reduction techniques, SSRN Electronic Journal (2023) | DOI:10.2139/ssrn.4591464
- Sparse Data-Driven Quadrature Rules via ℓ p -Quasi-Norm Minimization, Computational Methods in Applied Mathematics, Volume 22 (2022) no. 2, p. 389 | DOI:10.1515/cmam-2021-0131
- Goal-oriented model reduction for parametrized time-dependent nonlinear partial differential equations, Computer Methods in Applied Mechanics and Engineering, Volume 388 (2022), p. 114206 | DOI:10.1016/j.cma.2021.114206
- Efficient hyperreduction of high-order discontinuous Galerkin methods: Element-wise and point-wise reduced quadrature formulations, Journal of Computational Physics, Volume 466 (2022), p. 111399 | DOI:10.1016/j.jcp.2022.111399
- , AIAA AVIATION 2021 FORUM (2021) | DOI:10.2514/6.2021-2716
- A two-level parameterized Model-Order Reduction approach for time-domain elastodynamics, Computer Methods in Applied Mechanics and Engineering, Volume 385 (2021), p. 114004 | DOI:10.1016/j.cma.2021.114004
- Space-time registration-based model reduction of parameterized one-dimensional hyperbolic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 1, p. 99 | DOI:10.1051/m2an/2020073
- Goal‐oriented model reduction of parametrized nonlinear partial differential equations: Application to aerodynamics, International Journal for Numerical Methods in Engineering, Volume 121 (2020) no. 23, p. 5200 | DOI:10.1002/nme.6395
- Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws, Advances in Computational Mathematics, Volume 45 (2019) no. 5-6, p. 2287 | DOI:10.1007/s10444-019-09710-z
- An offline/online procedure for dual norm calculations of parameterized functionals: empirical quadrature and empirical test spaces, Advances in Computational Mathematics, Volume 45 (2019) no. 5-6, p. 2429 | DOI:10.1007/s10444-019-09721-w
- An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs, Computer Methods in Applied Mechanics and Engineering, Volume 344 (2019), p. 1104 | DOI:10.1016/j.cma.2018.02.028
- Recent contributions to linear semi-infinite optimization: an update, Annals of Operations Research, Volume 271 (2018) no. 1, p. 237 | DOI:10.1007/s10479-018-2987-8
Cité par 20 documents. Sources : Crossref