Partial differential equations/Numerical analysis
An LP empirical quadrature procedure for parametrized functions
[Une procédure de quadrature empirique par programmation linéaire pour les fonctions à paramètres]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 11, pp. 1161-1167.

Nous étendons la procédure de quadrature empirique par programmation linéaire proposée dans [9] et par la suite dans [3] au cas où les fonctions à intégrer sont associées à une variété paramétrique. Nous posons un problème de programmation linéaire discret et semi-infini : nous minimisons la fonction objectif, qui est la somme des poids (positifs) de quadrature, qui constitue une norme 1 menant à des solutions parcimonieuses et assurant la stabilité, les contraintes d'inégalité requises étant que les intégrales de J fonctions échantillonnées à partir de la variété soient évaluées à une précision δ¯. Nous fournissons un estimateur d'erreur a priori et des résultats numériques qui démontrent que, sous certaines conditions de régularité, toute fonction de la variété est évaluée par la méthode de quadrature empirique avec précision δ¯ quand J. Nous présentons deux exemples numériques : une transformée inverse de Laplace et un traitement par base réduite d'une équation aux dérivées partielles non linéaire.

We extend the linear program empirical quadrature procedure proposed in [9] and subsequently [3] to the case in which the functions to be integrated are associated with a parametric manifold. We pose a discretized linear semi-infinite program: we minimize as objective the sum of the (positive) quadrature weights, an 1 norm that yields sparse solutions and furthermore ensures stability; we require as inequality constraints that the integrals of J functions sampled from the parametric manifold are evaluated to accuracy δ¯. We provide an a priori error estimate and numerical results that demonstrate that under suitable regularity conditions, the integral of any function from the parametric manifold is evaluated by the empirical quadrature rule to accuracy δ¯ as J. We present two numerical examples: an inverse Laplace transform; reduced-basis treatment of a nonlinear partial differential equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.10.020
Patera, Anthony T. 1 ; Yano, Masayuki 2

1 Room 3-266, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
2 University of Toronto, 4925 Duffein Street, Toronto, ON, M3H 5T6, Canada
@article{CRMATH_2017__355_11_1161_0,
     author = {Patera, Anthony T. and Yano, Masayuki},
     title = {An {LP} empirical quadrature procedure for parametrized functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1161--1167},
     publisher = {Elsevier},
     volume = {355},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.020},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2017.10.020/}
}
TY  - JOUR
AU  - Patera, Anthony T.
AU  - Yano, Masayuki
TI  - An LP empirical quadrature procedure for parametrized functions
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1161
EP  - 1167
VL  - 355
IS  - 11
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2017.10.020/
DO  - 10.1016/j.crma.2017.10.020
LA  - en
ID  - CRMATH_2017__355_11_1161_0
ER  - 
%0 Journal Article
%A Patera, Anthony T.
%A Yano, Masayuki
%T An LP empirical quadrature procedure for parametrized functions
%J Comptes Rendus. Mathématique
%D 2017
%P 1161-1167
%V 355
%N 11
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2017.10.020/
%R 10.1016/j.crma.2017.10.020
%G en
%F CRMATH_2017__355_11_1161_0
Patera, Anthony T.; Yano, Masayuki. An LP empirical quadrature procedure for parametrized functions. Comptes Rendus. Mathématique, Tome 355 (2017) no. 11, pp. 1161-1167. doi : 10.1016/j.crma.2017.10.020. https://www.numdam.org/articles/10.1016/j.crma.2017.10.020/

[1] An, S.S.; Kim, T.; James, D.L. Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph., Volume 27 (2008) no. 5

[2] Barrault, M.; Maday, Y.; Nguyen, C.N.; Patera, A.T. An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 667-672

[3] R. DeVore, S. Foucart, G. Petrova, P. Wojtaszczyk, Computing a quantity of interest from observational data, preprint, 2017.

[4] Dossal, C. A necessary and sufficient condition for exact sparse recovery by 1 minimization, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 1–2, pp. 117-120

[5] Elad, M. Sparse and Redundant Representations, Springer, 2010

[6] Farhat, C.; Chapman, T.; Avery, P. Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models, Int. J. Numer. Methods Eng., Volume 102 (2015), pp. 1077-1110

[7] Foucart, S.; Rauhut, H. A Mathematical Introduction to Compressive Sensing, Birkhäuser, 2013

[8] Rozza, G.; Huynh, D.B.P.; Patera, A.T. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations; application to transport and continuum mechanics, Arch. Comput. Methods Eng., Volume 15 (2008), pp. 229-275

[9] Ryu, E.K.; Boyd, S.P. Extensions of Gauss quadrature via linear programming, Found. Comput. Math., Volume 15 (2015), pp. 953-971

  • Nguyen, Ngoc Cuong First‐Order Empirical Interpolation Method for Real‐Time Solution of Parametric Time‐Dependent Nonlinear PDEs, Numerical Methods for Partial Differential Equations, Volume 41 (2025) no. 3 | DOI:10.1002/num.70006
  • Hernández, J.A.; Giuliodori, A.; Soudah, E. Empirical Interscale Finite Element Method (EIFEM) for modeling heterogeneous structures via localized hyperreduction, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 116492 | DOI:10.1016/j.cma.2023.116492
  • Hernández, J.A.; Bravo, J.R.; Ares de Parga, S. CECM: A continuous empirical cubature method with application to the dimensional hyperreduction of parameterized finite element models, Computer Methods in Applied Mechanics and Engineering, Volume 418 (2024), p. 116552 | DOI:10.1016/j.cma.2023.116552
  • Ebrahimi, Mehran; Yano, Masayuki A hyperreduced reduced basis element method for reduced-order modeling of component-based nonlinear systems, Computer Methods in Applied Mechanics and Engineering, Volume 431 (2024), p. 117254 | DOI:10.1016/j.cma.2024.117254
  • Nguyen, Ngoc Cuong Model reduction techniques for parametrized nonlinear partial differential equations, Error Control, Adaptive Discretizations, and Applications, Part 1, Volume 58 (2024), p. 149 | DOI:10.1016/bs.aams.2024.03.005
  • Hatefi Ardakani, Saeed; Zingaro, Giovanni; Komijani, Mohammad; Gracie, Robert An efficient reduced order model for nonlinear transient porous media flow with time-varying injection rates, Finite Elements in Analysis and Design, Volume 241 (2024), p. 104237 | DOI:10.1016/j.finel.2024.104237
  • Bravo, J. R.; Hernández, J. A.; Ares de Parga, S.; Rossi, R. A subspace‐adaptive weights cubature method with application to the local hyperreduction of parameterized finite element models, International Journal for Numerical Methods in Engineering, Volume 125 (2024) no. 24 | DOI:10.1002/nme.7590
  • Salavatidezfouli, Sajad; Nikishova, Anna; Torlo, Davide; Teruzzi, Martina; Rozza, Gianluigi Computations for Sustainability, Quantitative Sustainability (2024), p. 91 | DOI:10.1007/978-3-031-39311-2_7
  • Andrés-Carcasona, Marc; Hernández, Joaquín Alberto On a fast numerical solution of the nonlinear Black-Scholes equation using hyper-reduction techniques, SSRN Electronic Journal (2023) | DOI:10.2139/ssrn.4591464
  • Manucci, Mattia; Aguado, Jose Vicente; Borzacchiello, Domenico Sparse Data-Driven Quadrature Rules via ℓ p -Quasi-Norm Minimization, Computational Methods in Applied Mathematics, Volume 22 (2022) no. 2, p. 389 | DOI:10.1515/cmam-2021-0131
  • Sleeman, Michael K.; Yano, Masayuki Goal-oriented model reduction for parametrized time-dependent nonlinear partial differential equations, Computer Methods in Applied Mechanics and Engineering, Volume 388 (2022), p. 114206 | DOI:10.1016/j.cma.2021.114206
  • Du, Eugene; Yano, Masayuki Efficient hyperreduction of high-order discontinuous Galerkin methods: Element-wise and point-wise reduced quadrature formulations, Journal of Computational Physics, Volume 466 (2022), p. 111399 | DOI:10.1016/j.jcp.2022.111399
  • Du, Eugene; Sleeman, Michael; Yano, Masayuki, AIAA AVIATION 2021 FORUM (2021) | DOI:10.2514/6.2021-2716
  • Bhouri, Mohamed Aziz; Patera, Anthony T. A two-level parameterized Model-Order Reduction approach for time-domain elastodynamics, Computer Methods in Applied Mechanics and Engineering, Volume 385 (2021), p. 114004 | DOI:10.1016/j.cma.2021.114004
  • Taddei, Tommaso; Zhang, Lei Space-time registration-based model reduction of parameterized one-dimensional hyperbolic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 1, p. 99 | DOI:10.1051/m2an/2020073
  • Yano, Masayuki Goal‐oriented model reduction of parametrized nonlinear partial differential equations: Application to aerodynamics, International Journal for Numerical Methods in Engineering, Volume 121 (2020) no. 23, p. 5200 | DOI:10.1002/nme.6395
  • Yano, Masayuki Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws, Advances in Computational Mathematics, Volume 45 (2019) no. 5-6, p. 2287 | DOI:10.1007/s10444-019-09710-z
  • Taddei, Tommaso An offline/online procedure for dual norm calculations of parameterized functionals: empirical quadrature and empirical test spaces, Advances in Computational Mathematics, Volume 45 (2019) no. 5-6, p. 2429 | DOI:10.1007/s10444-019-09721-w
  • Yano, Masayuki; Patera, Anthony T. An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs, Computer Methods in Applied Mechanics and Engineering, Volume 344 (2019), p. 1104 | DOI:10.1016/j.cma.2018.02.028
  • Goberna, M. A.; López, M. A. Recent contributions to linear semi-infinite optimization: an update, Annals of Operations Research, Volume 271 (2018) no. 1, p. 237 | DOI:10.1007/s10479-018-2987-8

Cité par 20 documents. Sources : Crossref