Combinatorics
Discriminantal arrangement, 3 × 3 minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n)
[Arrangement discriminant, mineurs 3 × 3 de la matrice de Plücker et hypersurfaces de la grassmannienne Gr(3,n)]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 11, pp. 1111-1120.

Nous montrons que les points d'hypersurfaces spécifiques de degré 2 de la grasmannienne Gr(3,n) correspondent aux arrrangements génériques de n hyperplans dans C3, dont l'arrangement discriminant possède des intersections de triplets d'hyperplans de codimension deux.

We show that points in specific degree-2 hypersurfaces in the Grassmannian Gr(3,n) correspond to generic arrangements of n hyperplanes in C3 with associated discriminantal arrangement having intersections of multiplicity three in codimension two.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.10.011
Sawada, Sumire 1 ; Settepanella, Simona 1 ; Yamagata, So 1

1 Department of Mathematics, Hokkaido University, Japan
@article{CRMATH_2017__355_11_1111_0,
     author = {Sawada, Sumire and Settepanella, Simona and Yamagata, So},
     title = {Discriminantal arrangement, 3\,{\texttimes}\,3 minors of {Pl\"ucker} matrix and hypersurfaces in {Grassmannian} {\protect\emph{Gr}(3,\protect\emph{n})}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1111--1120},
     publisher = {Elsevier},
     volume = {355},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.10.011/}
}
TY  - JOUR
AU  - Sawada, Sumire
AU  - Settepanella, Simona
AU  - Yamagata, So
TI  - Discriminantal arrangement, 3 × 3 minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n)
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1111
EP  - 1120
VL  - 355
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.10.011/
DO  - 10.1016/j.crma.2017.10.011
LA  - en
ID  - CRMATH_2017__355_11_1111_0
ER  - 
%0 Journal Article
%A Sawada, Sumire
%A Settepanella, Simona
%A Yamagata, So
%T Discriminantal arrangement, 3 × 3 minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n)
%J Comptes Rendus. Mathématique
%D 2017
%P 1111-1120
%V 355
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.10.011/
%R 10.1016/j.crma.2017.10.011
%G en
%F CRMATH_2017__355_11_1111_0
Sawada, Sumire; Settepanella, Simona; Yamagata, So. Discriminantal arrangement, 3 × 3 minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n). Comptes Rendus. Mathématique, Tome 355 (2017) no. 11, pp. 1111-1120. doi : 10.1016/j.crma.2017.10.011. http://www.numdam.org/articles/10.1016/j.crma.2017.10.011/

[1] Athanasiadis, C.A. The largest intersection lattice of a discriminantal arrangement, Beitr. Algebra Geom., Volume 40 (1999) no. 2, pp. 283-289

[2] Bachemand, A.; Kern, W. Adjoints of oriented matroids, Combinatorica, Volume 6 (1986), pp. 299-308

[3] Bayer, M.; Brandt, K. Discriminantal arrangements, fiber polytopes and formality, J. Algebraic Comb., Volume 6 (1997), pp. 229-246

[4] Crapo, H. Concurrence geometries, Adv. Math., Volume 54 (1984) no. 3, pp. 278-301

[5] Falk, M. A note on discriminantal arrangements, Proc. Amer. Math. Soc., Volume 122 (1994) no. 4, pp. 1221-1227

[6] Harris, J. Algebraic Geometry: A First Course, Springer-Verlag, 1992

[7] Kapranov, M.; Voevodsky, V. Braided monoidal 2-categories and Manin–Schechtman higher braid groups, J. Pure Appl. Algebra, Volume 92 (1994) no. 3, pp. 241-267

[8] Lawrence, R.J. A presentation for Manin and Schechtman's higher braid groups, 1991 http://www.ma.huji.ac.il/~ruthel/papers/premsh.html (MSRI pre-print)

[9] Libgober, A.; Settepanella, S. Strata of discriminantal arrangements | arXiv

[10] Manin, Yu.I.; Schechtman, V.V. Arrangements of hyperplanes, higher braid groups and higher Bruhat orders, Algebraic Number Theory in Honor K. Iwasawa, Advanced Studies in Pure Mathematics, vol. 17, 1989, pp. 289-308

[11] Orlik, P. Introduction to Arrangements, CBMS Reg. Conf. Ser. Math., vol. 72, American Mathematical Society, Providence, RI, USA, 1989

[12] Orlik, P.; Terao, H. Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 300, Springer-Verlag, Berlin, 1992

[13] Perling, M. Divisorial cohomology vanishing on toric varieties, Doc. Math., Volume 16 (2011), pp. 209-251

Cité par Sources :