Nous décrivons le comportement des faisceaux d'Ulrich en ce qui concerne leur image directe et réciproque par rapport aux éclatements des points. Nous corrigeons aussi un énoncé incorrect dans [11].
We deal with the behaviour of Ulrich bundles with respect to push-forward and pull-back via blowing-up points. We also correct a wrong statement in [11].
Accepté le :
Publié le :
@article{CRMATH_2017__355_12_1291_0, author = {Casnati, Gianfranco and Kim, Yeongrak}, title = {Ulrich bundles on blowing up (and an erratum)}, journal = {Comptes Rendus. Math\'ematique}, pages = {1291--1297}, publisher = {Elsevier}, volume = {355}, number = {12}, year = {2017}, doi = {10.1016/j.crma.2017.09.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2017.09.020/} }
TY - JOUR AU - Casnati, Gianfranco AU - Kim, Yeongrak TI - Ulrich bundles on blowing up (and an erratum) JO - Comptes Rendus. Mathématique PY - 2017 SP - 1291 EP - 1297 VL - 355 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2017.09.020/ DO - 10.1016/j.crma.2017.09.020 LA - en ID - CRMATH_2017__355_12_1291_0 ER -
%0 Journal Article %A Casnati, Gianfranco %A Kim, Yeongrak %T Ulrich bundles on blowing up (and an erratum) %J Comptes Rendus. Mathématique %D 2017 %P 1291-1297 %V 355 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2017.09.020/ %R 10.1016/j.crma.2017.09.020 %G en %F CRMATH_2017__355_12_1291_0
Casnati, Gianfranco; Kim, Yeongrak. Ulrich bundles on blowing up (and an erratum). Comptes Rendus. Mathématique, Tome 355 (2017) no. 12, pp. 1291-1297. doi : 10.1016/j.crma.2017.09.020. http://www.numdam.org/articles/10.1016/j.crma.2017.09.020/
[1] Surfaces rationelles non spéciales dans , Math. Z., Volume 200 (1988), pp. 87-110
[2] Minimal resolutions, Chow forms and Ulrich bundles on K3 surfaces, J. Reine Angew. Math., Volume 730 (2017), pp. 225-249
[3] Inner projections of algebraic surfaces: a finiteness result, J. Reine Angew. Math., Volume 460 (1995), pp. 1-13
[4] Rank 2 stable Ulrich bundles on anticanonically embedded surfaces, Bull. Aust. Math. Soc., Volume 95 (2017), pp. 22-37
[5] Special Ulrich bundles on non-special surfaces with , Int. J. Math., Volume 28 (2017)
[6] Rank two aCM bundles on the del Pezzo threefold of degree 7, Rev. Mat. Complut., Volume 30 (2017), pp. 129-165
[7] Semistable Vector Bundles on Bubble Tree Surfaces, SISSA–Université Lille-1, 2015 (PhD thesis)
[8] Resultants and Chow forms via exterior syzigies, J. Amer. Math. Soc., Volume 16 (2003), pp. 537-579
[9] Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, 1977
[10] Linear maximal Cohen–Macaulay modules over strict complete intersections, J. Pure Appl. Algebra, Volume 71 (1991), pp. 187-202
[11] Ulrich bundles on blowing ups, C. R. Acad. Sci. Paris, Ser. I, Volume 354 (2016), pp. 1215-1218
[12] Noether–Lefschetz Theory and the Picard Group of Projective Surfaces, Memoirs of the AMS, vol. 89, 1991
[13] Vector bundles on algebraic surfaces, Proc. Lond. Math. Soc., Volume 11 (1961), pp. 601-622
Cité par Sources :