Numerical analysis
Semi-implicit staggered mesh scheme for the multi-layer shallow water system
[Schéma semi-implicite sur maillages décalés pour le système shallow water multi-couches]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 12, pp. 1298-1306.

Nous proposons un schéma semi-implicite destiné à un modèle shallow water multicouches 2d avec stratification en densité, formulé sur maillages décalés généraux. Le principal résultat de cette note concerne le contrôle de l'énergie mécanique au niveau discret, qui se base principalement sur des flux advectifs faisant intervenir un terme de diffusion exprimé en fonction du gradient de pression. Le schéma est aussi conçu pour capturer les dynamiques des régimes à faible nombre de Froude et offre d'intéressantes propriétés en termes de positivité et préservation des états d'équilibre. Un test numérique est proposé pour illustrer l'efficacité du schéma dans le cas monocouche.

We present a semi-implicit scheme for a two-dimensional multilayer shallow water system with density stratification, formulated on general staggered meshes. The main result of the present note concerns the control of the mechanical energy at the discrete level, principally based on advective fluxes implying a diffusion term expressed in terms of the gradient pressure. The scheme is also designed to capture the dynamics of low-Froude-number regimes and offers interesting positivity and well-balancing results. A numerical test is proposed to highlight the scheme's efficiency in the one-layer case.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.09.011
Duran, Arnaud 1 ; Vila, Jean-Paul 2, 3 ; Baraille, Rémy 2, 3, 4

1 Institut Camille-Jordan, Université Claude-Bernard, Lyon-1, France
2 Institut de mathématiques de Toulouse, Université Paul-Sabatier, Toulouse-3, France
3 INSA, Institut de mathématiques de Toulouse, Université Paul-Sabatier, Toulouse-3, France
4 Service hydrographique et océanographique de la Marine, France
@article{CRMATH_2017__355_12_1298_0,
     author = {Duran, Arnaud and Vila, Jean-Paul and Baraille, R\'emy},
     title = {Semi-implicit staggered mesh scheme for the multi-layer shallow water system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1298--1306},
     publisher = {Elsevier},
     volume = {355},
     number = {12},
     year = {2017},
     doi = {10.1016/j.crma.2017.09.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.09.011/}
}
TY  - JOUR
AU  - Duran, Arnaud
AU  - Vila, Jean-Paul
AU  - Baraille, Rémy
TI  - Semi-implicit staggered mesh scheme for the multi-layer shallow water system
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1298
EP  - 1306
VL  - 355
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.09.011/
DO  - 10.1016/j.crma.2017.09.011
LA  - en
ID  - CRMATH_2017__355_12_1298_0
ER  - 
%0 Journal Article
%A Duran, Arnaud
%A Vila, Jean-Paul
%A Baraille, Rémy
%T Semi-implicit staggered mesh scheme for the multi-layer shallow water system
%J Comptes Rendus. Mathématique
%D 2017
%P 1298-1306
%V 355
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.09.011/
%R 10.1016/j.crma.2017.09.011
%G en
%F CRMATH_2017__355_12_1298_0
Duran, Arnaud; Vila, Jean-Paul; Baraille, Rémy. Semi-implicit staggered mesh scheme for the multi-layer shallow water system. Comptes Rendus. Mathématique, Tome 355 (2017) no. 12, pp. 1298-1306. doi : 10.1016/j.crma.2017.09.011. http://www.numdam.org/articles/10.1016/j.crma.2017.09.011/

[1] Ansanay-Alex, G.; Babik, F.; Latché, J.-C.; Vola, D. An L2 stable approximation of the Navier Stokes convection operator for low-order non-conforming finite elements, Int. J. Numer. Methods Fluids, Volume 66 (2011) no. 5, pp. 555-580

[2] Couderc, F.; Duran, A.; Vila, J.-P. An explicit asymptotic preserving low-Froude scheme for the multilayer shallow water model with density stratification, J. Comput. Phys., Volume 343 (2017), pp. 235-270

[3] Duchene, V. The multilayer shallow water system in the limit of small density contrast, Asymptot. Anal., Volume 98 (2016) no. 3, pp. 189-235

[4] Grenier, N.; Vila, J.-P.; Villedieu, P. An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows, J. Comput. Phys., Volume 252 (2013), pp. 1-19

[5] Herbin, R.; Latché, J.-C.; Nguyen, T. Explicit staggered schemes for the compressible Euler equations, ESAIM Proc., Volume 40 (2014), pp. 83-102

[6] Herbin, R.; Kheriji, W.; Latché, J.-C. On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations, ESAIM: Math. Model. Numer. Anal., Volume 48 (2014) no. 6, pp. 1807-1857

[7] Kheriji, W.; Herbin, R.; Latché, J.-C. Pressure correction staggered schemes for barotropic one-phase and two-phase flows, Comput. Fluids, Volume 88 (2013), pp. 524-542

[8] Leclair, M.; Madec, G. A conservative leapfrog time stepping method, Ocean Model., Volume 30 (2009) no. 2–3, pp. 88-94

[9] Madec, G., Institut Pierre–Simon–Laplace (2008), pp. 3723-3750 (Technical Report 27)

[10] Monjarret, R. The Multi-Layer Shallow Water Model with Free Surface. Numerical Treatment of the Open Boundaries, Institut national polytechnique de Toulouse, Université de Toulouse, 2014 (PHD)

[11] Parisot, M.; Vila, J.-P. Centered-potential regularization of advection upstream splitting method: application to the multilayer shallow water model in the low-Froude-number regime, SIAM J. Numer. Anal., Volume 54 (2016) no. 5, pp. 3083-3104

[12] Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., Volume 9 (2005), pp. 347-404

[13] Thacker, W.C. Some exact solutions to the nonlinear shallow water wave equations, J. Fluid Mech., Volume 107 (1981), pp. 499-508

[14] Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2006

Cité par Sources :