Partial differential equations/Calculus of variations
Global continuity of solutions to quasilinear equations with Morrey data
[La continuité globale de solutions d'équations quasi-linéaires avec des données de Morrey]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 717-721.

Nous annonçons quelques résultats récents sur la régularité höldérienne globale pour les solutions faibles d'équations coercitives quasi linéaires avec des données appartenant à des espaces de Morrey.

We announce some recent results on boundedness and Hölder continuity up to the boundary for the weak solutions to coercive quasilinear equations with data belonging to Morrey spaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.003
Byun, Sun-Sig 1 ; Palagachev, Dian K. 2 ; Shin, Pilsoo 1

1 Seoul National University, Department of Mathematics, Seoul 151-747, Republic of Korea
2 Politecnico di Bari, DMMM, Via Edoardo Orabona 4, 70125 Bari, Italy
@article{CRMATH_2015__353_8_717_0,
     author = {Byun, Sun-Sig and Palagachev, Dian K. and Shin, Pilsoo},
     title = {Global continuity of solutions to quasilinear equations with {Morrey} data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {717--721},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.06.003/}
}
TY  - JOUR
AU  - Byun, Sun-Sig
AU  - Palagachev, Dian K.
AU  - Shin, Pilsoo
TI  - Global continuity of solutions to quasilinear equations with Morrey data
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 717
EP  - 721
VL  - 353
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.06.003/
DO  - 10.1016/j.crma.2015.06.003
LA  - en
ID  - CRMATH_2015__353_8_717_0
ER  - 
%0 Journal Article
%A Byun, Sun-Sig
%A Palagachev, Dian K.
%A Shin, Pilsoo
%T Global continuity of solutions to quasilinear equations with Morrey data
%J Comptes Rendus. Mathématique
%D 2015
%P 717-721
%V 353
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.06.003/
%R 10.1016/j.crma.2015.06.003
%G en
%F CRMATH_2015__353_8_717_0
Byun, Sun-Sig; Palagachev, Dian K.; Shin, Pilsoo. Global continuity of solutions to quasilinear equations with Morrey data. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 717-721. doi : 10.1016/j.crma.2015.06.003. http://www.numdam.org/articles/10.1016/j.crma.2015.06.003/

[1] Adams, D.R. Traces of potentials arising from translation invariant operators, Ann. Sc. Norm. Super. Pisa (3), Volume 25 (1971), pp. 203-217

[2] Byun, S.-S.; Palagachev, D.K. Boundedness of the weak solutions to quasilinear elliptic equations with Morrey data, Indiana Univ. Math. J., Volume 62 (2013), pp. 1565-1585

[3] Byun, S.-S.; Palagachev, D.K.; Shin, P. Global Hölder continuity of solutions to quasilinear equations with Morrey data, 2015 | arXiv

[4] De Giorgi, E. Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. (3) (1957), pp. 25-43

[5] Gariepy, R.; Ziemer, W.P. A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Ration. Mech. Anal., Volume 67 (1977), pp. 25-39

[6] Hartman, Ph.; Stampacchia, G. On some non-linear elliptic differential-functional equations, Acta Math., Volume 115 (1966), pp. 271-310

[7] Ladyzhenskaya, O.A.; Ural'tseva, N.N. Linear and Quasilinear Equations of Elliptic Type, Nauka, Moscow, 1973 (in Russian)

[8] Lewis, J.L. Uniformly fat sets, Trans. Amer. Math. Soc., Volume 308 (1988), pp. 177-196

[9] Lewy, H.; Stampacchia, G. On the smoothness of superharmonics which solve a minimum problem, J. Anal. Math., Volume 23 (1970), pp. 227-236

[10] Lieberman, G.M. Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures, Commun. Partial Differ. Equ., Volume 18 (1993), pp. 1191-1212

[11] Morrey, C.B. Jr. Second order elliptic equations in several variables and Hölder continuity, Math. Z., Volume 72 (1959–1960), pp. 146-164

[12] Piccinini, L.C. Inclusioni tra spazi di Morrey, Boll. Unione Mat. Ital. (4), Volume 2 (1969), pp. 95-99

[13] Serrin, J. Local behavior of solutions of quasi-linear equations, Acta Math., Volume 111 (1964), pp. 247-302

[14] Stampacchia, G. Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), Volume 15 (1965), pp. 189-258

[15] Trudinger, N.S. On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., Volume 20 (1967), pp. 721-747

Cité par Sources :