Harmonic analysis/Functional analysis
Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators
[Intégrales triples opératorielles en normes de Schatten–von Neumann et fonctions d'opérateurs perturbés ne commutant pas]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 723-728.

Nous examinons les perturbations de fonctions f(A,B) d'opérateurs auto-adjoints A et B qui ne commutent pas. De telles fonctions peuvent être définies en termes d'intégrales doubles opératorielles. Pour f dans l'espace de Besov B,11(R2), nous obtenons l'estimation lipschitzienne en norme de Schatten–von Neumann Sp, 1p2 : f(A1,B1)f(A2,B2)Spconst(A1A2Sp+B1B2Sp). Par ailleurs, la condition fB,11(R2) n'implique pas l'estimation lipschitzienne en norme de Sp pour p>2. L'outil principal consiste en l'estimation d'intégrales triples opératorielles dans les normes de Sp.

We study perturbations of functions f(A,B) of noncommuting self-adjoint operators A and B that can be defined in terms of double operator integrals. We prove that if f belongs to the Besov class B,11(R2), then we have the following Lipschitz-type estimate in the Schatten–von Neumann norm Sp, 1p2: f(A1,B1)f(A2,B2)Spconst(A1A2Sp+B1B2Sp). However, the condition fB,11(R2) does not imply the Lipschitz-type estimate in Sp with p>2. The main tool is Schatten–von Neumann norm estimates for triple operator integrals.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.05.005
Aleksandrov, Aleksei 1 ; Nazarov, Fedor 2 ; Peller, Vladimir 3

1 Saint Petersburg Branch, Steklov Institute of Mathematics, Fontanka 27, 191023 Saint Petersburg, Russia
2 Department of Mathematics, Kent State University, Kent, OH 44242, USA
3 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
@article{CRMATH_2015__353_8_723_0,
     author = {Aleksandrov, Aleksei and Nazarov, Fedor and Peller, Vladimir},
     title = {Triple operator integrals in {Schatten{\textendash}von} {Neumann} norms and functions of perturbed noncommuting operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {723--728},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crma.2015.05.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.05.005/}
}
TY  - JOUR
AU  - Aleksandrov, Aleksei
AU  - Nazarov, Fedor
AU  - Peller, Vladimir
TI  - Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 723
EP  - 728
VL  - 353
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.05.005/
DO  - 10.1016/j.crma.2015.05.005
LA  - en
ID  - CRMATH_2015__353_8_723_0
ER  - 
%0 Journal Article
%A Aleksandrov, Aleksei
%A Nazarov, Fedor
%A Peller, Vladimir
%T Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators
%J Comptes Rendus. Mathématique
%D 2015
%P 723-728
%V 353
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.05.005/
%R 10.1016/j.crma.2015.05.005
%G en
%F CRMATH_2015__353_8_723_0
Aleksandrov, Aleksei; Nazarov, Fedor; Peller, Vladimir. Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 723-728. doi : 10.1016/j.crma.2015.05.005. http://www.numdam.org/articles/10.1016/j.crma.2015.05.005/

[1] Aleksandrov, A.B.; Peller, V.V. Operator Hölder–Zygmund functions, Adv. Math., Volume 224 (2010), pp. 910-966

[2] Aleksandrov, A.B.; Peller, V.V.; Potapov, D.; Sukochev, F. Functions of normal operators under perturbations, Adv. Math., Volume 226 (2011), pp. 5216-5251

[3] Aleksandrov, A.B.; Nazarov, F.L.; Peller, V.V. Functions of perturbed noncommuting self-adjoint operators, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015), pp. 209-214

[4] Bergh, J.; Löfström, J. Interpolation Spaces, Springer-Verlag, Berlin, 1976

[5] Birman, M.S.; Solomyak, M.Z. Double Stieltjes operator integrals, Probl. Math. Phys., Leningrad. Univ., Volume 1 (1966), pp. 33-67 (in Russian). English transl.: Top. Math. Phys. 1 (1967) 25–54, Consultants Bureau Plenum Publishing Corporation, New York

[6] Farforovskaya, Yu.B. The connection of the Kantorovich–Rubinshtein metric for spectral resolutions of selfadjoint operators with functions of operators, Vestn. Leningr. Univ., Math., Volume 19 (1968), pp. 94-97 (in Russian)

[7] Juschenko, K.; Todorov, I.G.; Turowska, L. Multidimensional operator multipliers, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 4683-4720

[8] Nazarov, F.L.; Peller, V.V. Functions of n-tuples of commuting self-adjoint operators, J. Funct. Anal., Volume 266 (2014), pp. 5398-5428

[9] Peetre, J. New Thoughts on Besov Spaces, Duke University Press, Durham, NC, USA, 1976

[10] Peller, V.V. Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funkc. Anal. Prilozh., Volume 19 (1985) no. 2, pp. 37-51 (in Russian). English transl.: Funct. Anal. Appl. 19 (1985) 111–123

[11] Peller, V.V. Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and Partial Differential Equations, Lecture Notes Pure Appl. Math., vol. 122, Dekker, New York, 1990, pp. 529-544

[12] Peller, V.V. Hankel Operators and Their Applications, Springer-Verlag, New York, 2003

[13] Peller, V.V. Multiple operator integrals and higher operator derivatives, J. Funct. Anal., Volume 233 (2006), pp. 515-544

[14] Pisier, G. Introduction to Operator Space Theory, London Math. Soc. Lecture Notes Ser., vol. 294, Cambridge University Press, Cambridge, UK, 2003

Cité par Sources :