On dit que des opérateurs A et B sont presque commutants si leur commutateur appartient à la classe trace. Pour des opérateurs A et B auto-adjoints qui presque commutent, nous construisons un calcul fonctionnel , , où est la classe de Besov. Ce calcul a les propriétés suivantes : il est linéaire, les opérateurs et presque commutent pour toutes les fonctions φ et ψ dans , si , et la formule des traces de Helton et Howe est vraie. L'outil principal est la notion d'intégrales triples opératorielles.
Let A and B be almost commuting (i.e, ) self-adjoint operators. We construct a functional calculus for φ in the Besov class . This functional calculus is linear, the operators and almost commute for , whenever , and the Helton–Howe trace formula holds. The main tool is triple operator integrals.
Accepté le :
Publié le :
@article{CRMATH_2015__353_7_583_0, author = {Aleksandrov, Aleksei and Peller, Vladimir}, title = {Almost commuting functions of almost commuting self-adjoint operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {583--588}, publisher = {Elsevier}, volume = {353}, number = {7}, year = {2015}, doi = {10.1016/j.crma.2015.04.012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.04.012/} }
TY - JOUR AU - Aleksandrov, Aleksei AU - Peller, Vladimir TI - Almost commuting functions of almost commuting self-adjoint operators JO - Comptes Rendus. Mathématique PY - 2015 SP - 583 EP - 588 VL - 353 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.04.012/ DO - 10.1016/j.crma.2015.04.012 LA - en ID - CRMATH_2015__353_7_583_0 ER -
%0 Journal Article %A Aleksandrov, Aleksei %A Peller, Vladimir %T Almost commuting functions of almost commuting self-adjoint operators %J Comptes Rendus. Mathématique %D 2015 %P 583-588 %V 353 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2015.04.012/ %R 10.1016/j.crma.2015.04.012 %G en %F CRMATH_2015__353_7_583_0
Aleksandrov, Aleksei; Peller, Vladimir. Almost commuting functions of almost commuting self-adjoint operators. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 583-588. doi : 10.1016/j.crma.2015.04.012. http://www.numdam.org/articles/10.1016/j.crma.2015.04.012/
[1] Functions of perturbed noncommuting self-adjoint operators, C. R. Acad. Sci. Paris, Ser. I (2015) (in press)
[2] Operator Hölder–Zygmund functions, Adv. Math., Volume 224 (2010), pp. 910-966
[3] Double Stieltjes operator integrals, Problems of Math. Phys., vol. 1, Leningrad University, 1966, pp. 33-67 (Russian). English translation: Topics in Mathematical Physics, vol. 1, Consultants Bureau Plenum Publishing Corporation, New York, 1967, pp. 25–54
[4] Mosaics, principal functions and mean motion in von Neumann algebras, Acta Math., Volume 138 (1977), pp. 153-218
[5] Seminormal Operators, Lecture Notes in Mathematics, vol. 742, Springer-Verlag, Berlin, 1979
[6] Integral operators, commutators, traces, index, and homology, Lecture Notes in Mathematics, vol. 345, Springer-Verlag, New York, 1973, pp. 141-209
[7] Multidimensional operator multipliers, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 4683-4720
[8] New Thoughts on Besov Spaces, Duke Univ. Press, Durham, NC, 1976
[9] Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorizing operators), Mat. Sb., Volume 113 (1980), pp. 538-581 English translation in Math. USSR Sbornik 41 (1982) 443–479
[10] Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funkc. Anal. Prilozh., Volume 19 (1985) no. 2, pp. 37-51 (Russian). English translation: Funct. Anal. Appl. 19 (1985) 111–123
[11] Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and Partial Differential Equations, Lecture Notes in Pure and Applied Mathematics, vol. 122, Dekker, New York, 1990, pp. 529-544
[12] Functional calculus for a pair of almost commuting self-adjoint operators, J. Funct. Anal., Volume 112 (1993), pp. 325-345
[13] Hankel Operators and Their Applications, Springer-Verlag, New York, 2003
[14] Multiple operator integrals and higher operator derivatives, J. Funct. Anal., Volume 233 (2006), pp. 515-544
[15] Commutators and systems of singular integral equations, I, Acta Math., Volume 121 (1968), pp. 219-249
[16] J.D. Pincus, On the trace of commutators in the algebra of operators generated by an operator with trace class self-commutator, Stony Brook, preprint, 1972.
[17] Introduction to Operator Space Theory, London Math. Society Lect. Notes Series, vol. 294, Cambridge University Press, Cambridge, UK, 2003
Cité par Sources :