Étant donnée une fonction localement bornée
Let X be a separable Banach space with the bounded approximation property,
Accepté le :
Publié le :
@article{CRMATH_2015__353_6_501_0, author = {Patyi, Imre}, title = {On holomorphic domination, {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {501--503}, publisher = {Elsevier}, volume = {353}, number = {6}, year = {2015}, doi = {10.1016/j.crma.2015.04.001}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2015.04.001/} }
Patyi, Imre. On holomorphic domination, II. Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 501-503. doi : 10.1016/j.crma.2015.04.001. https://www.numdam.org/articles/10.1016/j.crma.2015.04.001/
[1] Bounding subsets of a Banach space, Math. Ann., Volume 192 (1971), pp. 61-70
[2] On bases, finite dimensional decompositions and weaker structures in Banach spaces, Isr. J. Math., Volume 9 (1971), pp. 488-506
[3] Bounding subsets of
[4] Approximation of holomorphic functions of infinitely many variables, II, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 2, pp. 423-442
[5] The Dolbeault complex in infinite dimensions, III, Sheaf cohomology in Banach spaces, Invent. Math., Volume 142 (2000) no. 3, pp. 579-603
[6] Plurisubharmonic domination, J. Amer. Math. Soc., Volume 17 (2004), pp. 361-372
[7] Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math., Volume 8 (2004), pp. 65-85
[8] Analytic sheaves in Banach spaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 40 (2007), pp. 453-486
[9] On holomorphic Banach vector bundles over Banach spaces, Math. Ann., Volume 341 (2008) no. 2, pp. 455-482
[10] On holomorphic domination, I, Bull. Sci. Math., Volume 135 (2011), pp. 303-311
[11] Plurisubharmonic domination in Banach spaces, Adv. Math., Volume 227 (2011), pp. 245-252
[12] On complex Banach manifolds similar to Stein manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 43-45
[13] Projections in certain Banach spaces, Stud. Math., Volume 19 (1960), pp. 209-228
Cité par Sources :