On définit une application multiplicative sur l'anneau des vecteurs de Witt.
We discuss a multiplicative version of the Verschiebung map of Witt vectors that we call the norm.
Accepté le :
Publié le :
@article{CRMATH_2015__353_5_381_0, author = {Angeltveit, Vigleik}, title = {The norm map of {Witt} vectors}, journal = {Comptes Rendus. Math\'ematique}, pages = {381--386}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2015.02.014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.02.014/} }
Angeltveit, Vigleik. The norm map of Witt vectors. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 381-386. doi : 10.1016/j.crma.2015.02.014. http://www.numdam.org/articles/10.1016/j.crma.2015.02.014/
[1] Witt vectors and truncation posets (Preprint) | arXiv
[2] Witt vectors and Tambara functors, Adv. Math., Volume 193 (2005) no. 2, pp. 233-256
[3] Groupes formels associés aux anneaux de Witt généralisés, C. R. Acad. Sci. Paris, Ser. A–B, Volume 265 (1967), p. A49-A52
[4] The Burnside ring of profinite groups and the Witt vector construction, Adv. Math., Volume 70 (1988) no. 1, pp. 87-132
[5] Localization and completion theorems for -module spectra, Ann. Math., Volume 146 (1997) no. 3, pp. 509-544
[6] The big de Rham–Witt complex, Acta Math., Volume 214 (2015), pp. 135-207
[7] On the K-theory of finite algebras over Witt vectors of perfect fields, Topology, Volume 36 (1997) no. 1, pp. 29-101
[8] On the de Rham–Witt complex in mixed characteristic, Ann. Sci. École Norm. Sup. (4), Volume 37 (2004) no. 1, pp. 1-43
[9] Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4), Volume 12 (1979) no. 4, pp. 501-661
[10] Zyklische Körper und Algebren der Charakteristik p vom Grad . Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik p, J. Reine Angew. Math., Volume 176 (1937), pp. 126-140
Cité par Sources :