Le but de cet article est d'étudier les amas quantiques dont les variables d'amas (mais pas les coefficients) commutent entre elles. Cette propriété est préservée par les mutations si l'on commence par une graine quantique principale. Remarquablement, elle est équivalente à la conjecture notoire sur la cohérence de signes qui a été récemment démontrée par M. Gross, P. Hacking, S. Keel et M. Kontsevich.
The goal of this note is to study quantum clusters in which cluster variables (not coefficients) commute which each other. It turns out that this property is preserved by mutations if one starts with a principal quantum seed. Remarkably, this is equivalent to the celebrated sign coherence conjecture recently proved by M. Gross, P. Hacking, S. Keel, and M. Kontsevich.
Accepté le :
Publié le :
@article{CRMATH_2015__353_5_387_0, author = {Berenstein, Arkady and Greenstein, Jacob and Kazhdan, David}, title = {Integrable clusters}, journal = {Comptes Rendus. Math\'ematique}, pages = {387--390}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2015.02.006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.02.006/} }
TY - JOUR AU - Berenstein, Arkady AU - Greenstein, Jacob AU - Kazhdan, David TI - Integrable clusters JO - Comptes Rendus. Mathématique PY - 2015 SP - 387 EP - 390 VL - 353 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.02.006/ DO - 10.1016/j.crma.2015.02.006 LA - en ID - CRMATH_2015__353_5_387_0 ER -
%0 Journal Article %A Berenstein, Arkady %A Greenstein, Jacob %A Kazhdan, David %T Integrable clusters %J Comptes Rendus. Mathématique %D 2015 %P 387-390 %V 353 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2015.02.006/ %R 10.1016/j.crma.2015.02.006 %G en %F CRMATH_2015__353_5_387_0
Berenstein, Arkady; Greenstein, Jacob; Kazhdan, David. Integrable clusters. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 387-390. doi : 10.1016/j.crma.2015.02.006. http://www.numdam.org/articles/10.1016/j.crma.2015.02.006/
[1] Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, 1989
[2] Quantum cluster algebras, Adv. Math., Volume 195 (2005) no. 2, pp. 405-455
[3] Triangular bases in quantum cluster algebras, Int. Math. Res. Not., Volume 2014 (2014) no. 6, pp. 1651-1688
[4] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529
[5] Cluster algebras, IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164
[6] Canonical bases for cluster algebras | arXiv
[7] On tropical dualities in cluster algebras, Algebraic Groups and Quantum Groups, Contemp. Math., vol. 565, Amer. Math. Soc., Providence, RI, 2012, pp. 217-226
[8] Deformation quantization of Lagrangian fiber bundles, 1999, Dijon, France (Math. Phys. Stud.), Volume vol. 22, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000), pp. 263-287 MR1805921 (2002h:53156)
Cité par Sources :
☆ The authors were partially supported by the BSF grant no. 2012365 (A. B. and D. K.), NSF grant DMS-1403527 (A. B.), the ERC grant no. 247049 (D. K.) and the Simons Foundation collaboration grant no. 245735 (J. G.).