Il est bien connu que la caractéristique d'Euler de la cohomologie d'une variété algébrique complexe coïncide avec celle de sa cohomologie à support compact. Un résultat déjà ancien de G. Laumon affirme une version relative de cet énoncé en cohomologie ℓ-adique. Notre propos dans cette Note est d'étendre le résultat de Laumon au cadre topologique. Nous discutons également quelques applications.
It is well known that the Euler characteristic of the cohomology of a complex algebraic variety coincides with the Euler characteristic of its cohomology with compact support. An old result of G. Laumon asserts that a relative version of this statement is true in ℓ-adic cohomology. The purpose of this note is to extend Laumon's result to the topological setting. Some applications are also discussed.
@article{CRMATH_2015__353_5_449_0, author = {Virk, Rahbar}, title = {On {Euler{\textendash}Poincar\'e} characteristics}, journal = {Comptes Rendus. Math\'ematique}, pages = {449--453}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2015.02.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.02.005/} }
Virk, Rahbar. On Euler–Poincaré characteristics. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 449-453. doi : 10.1016/j.crma.2015.02.005. http://www.numdam.org/articles/10.1016/j.crma.2015.02.005/
[1] Faisceaux pervers, Astérisque, Volume 100 (1982), pp. 1-172
[2] Equivariant Sheaves and Functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994
[3] Comparaison avec la théorie transcendante, exposé XIV (Deligne, P.; Katz, N., eds.), Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Math., vol. 340, Springer-Verlag, Berlin, New York, 1973
[4] Odds and ends on finite group actions and traces | arXiv
[5] Comparison de caracterisques d'Euler–Poincaré em cohomologie ℓ-adique, C. R. Acad. Sci. Paris, Ser. I, Volume 292 (1981) no. 3, pp. 209-212
[6] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, vol. 42, Springer-Verlag, Berlin, 2000
[7] Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 6, pp. 849-995
[8] Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990), pp. 221-333
[9] Topology of Singular Spaces and Constructible Sheaves, Math. Institute of the Polish Academy of Sciences, Math. Monographs (new series), vol. 63, Birkhäuser Verlag, Basel, Switzerland, 2003
Cité par Sources :