Dans cette note, nous présentons une construction générale de méthodes spectrales pour l'opérateur de collision de l'équation de Boltzmann permettant de préserver exactement les états stationnaires maxwelliens de ce type d'équations. Cette nouvelle approche est basée sur une décomposition de type « micro–macro » de la solution de l'équation, tout en restant très proche d'une méthode spectrale plus classique. Nous montrons que les méthodes obtenues sont capables d'approcher avec une précision spectrale, uniformément en temps, la solution de l'équation considérée, et nous présentons leur efficacité dans un test numérique.
In this note, we present a general way to construct spectral methods for the collision operator of the Boltzmann equation that preserves exactly the Maxwellian steady state of the system. We show that the resulting method is able to approximate with spectral accuracy the solution uniformly in time.
Accepté le :
Publié le :
@article{CRMATH_2015__353_4_309_0, author = {Filbet, Francis and Pareschi, Lorenzo and Rey, Thomas}, title = {On steady-state preserving spectral methods for homogeneous {Boltzmann} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {309--314}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.015}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2015.01.015/} }
TY - JOUR AU - Filbet, Francis AU - Pareschi, Lorenzo AU - Rey, Thomas TI - On steady-state preserving spectral methods for homogeneous Boltzmann equations JO - Comptes Rendus. Mathématique PY - 2015 SP - 309 EP - 314 VL - 353 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2015.01.015/ DO - 10.1016/j.crma.2015.01.015 LA - en ID - CRMATH_2015__353_4_309_0 ER -
%0 Journal Article %A Filbet, Francis %A Pareschi, Lorenzo %A Rey, Thomas %T On steady-state preserving spectral methods for homogeneous Boltzmann equations %J Comptes Rendus. Mathématique %D 2015 %P 309-314 %V 353 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2015.01.015/ %R 10.1016/j.crma.2015.01.015 %G en %F CRMATH_2015__353_4_309_0
Filbet, Francis; Pareschi, Lorenzo; Rey, Thomas. On steady-state preserving spectral methods for homogeneous Boltzmann equations. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 309-314. doi : 10.1016/j.crma.2015.01.015. https://www.numdam.org/articles/10.1016/j.crma.2015.01.015/
[1] Fast deterministic method of solving the Boltzmann equation for hard spheres, Eur. J. Mech. B, Fluids, Volume 18 (1999), pp. 869-887
[2] Exact solutions of the Boltzmann equation, Dokl. Akad. Nauk SSSR, Volume 225 (1975), pp. 1296-1299
[3] The Mathematical Theory of Dilute Gases, Springer-Verlag, 1994
[4] Numerical methods for kinetic equations, Acta Numer., Volume 23 (2014), pp. 369-520
[5] Analysis of spectral methods for the homogeneous Boltzmann equation, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 1947-1980
[6] Solving the Boltzmann equation in
[7] Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, J. Comput. Phys., Volume 228 (2009) no. 6, pp. 2012-2036
[8] Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Mat. Univ. Parma, Volume 3 (June, 2010), pp. 177-216
[9] A micro–macro decomposition-based asymptotic-preserving scheme for the multispecies Boltzmann equation, SIAM J. Sci. Comput., Volume 31 (2009–2010) no. 6, pp. 4580-4606
[10] Exact solutions of the Boltzmann equation, Phys. Fluids, Volume 20 (1977) no. 10, pp. 1589-1595
[11] A new asymptotic preserving scheme based on micro–macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., Volume 31 (2008) no. 10, pp. 334-368
[12] Fast methods for the Boltzmann collision integral, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 1, pp. 71-76
[13] A spectral method for the homogeneous Boltzmann equation, Transp. Theory Stat. Phys., Volume 25 (1996), pp. 369-383
[14] Numerical solution of the Boltzmann equation I. Spectrally accurate approximation of the collision operator, SIAM J. Numer. Anal., Volume 37 (2000), pp. 1217-1245
- Discrete hypocoercivity for a nonlinear kinetic reaction model, IMA Journal of Numerical Analysis (2024) | DOI:10.1093/imanum/drae058
- Micro-Macro Stochastic Galerkin Methods for Nonlinear Fokker–Planck Equations with Random Inputs, Multiscale Modeling Simulation, Volume 22 (2024) no. 1, p. 527 | DOI:10.1137/22m1509205
- On deterministic numerical methods for the quantum Boltzmann-Nordheim equation. I. Spectrally accurate approximations, Bose-Einstein condensation, Fermi-Dirac saturation, Journal of Computational Physics, Volume 488 (2023), p. 112197 | DOI:10.1016/j.jcp.2023.112197
- Moment Preserving Fourier–Galerkin Spectral Methods and Application to the Boltzmann Equation, SIAM Journal on Numerical Analysis, Volume 60 (2022) no. 6, p. 3216 | DOI:10.1137/21m1423452
- On the stability of equilibrium preserving spectral methods for the homogeneous Boltzmann equation, Applied Mathematics Letters, Volume 120 (2021), p. 107187 | DOI:10.1016/j.aml.2021.107187
- Asymptotic preserving schemes for the FitzHugh–Nagumo transport equation with strong local interactions, BIT Numerical Mathematics, Volume 61 (2021) no. 3, p. 771 | DOI:10.1007/s10543-021-00844-5
- Moment method as a numerical solver: Challenge from shock structure problems, Journal of Computational Physics, Volume 444 (2021), p. 110593 | DOI:10.1016/j.jcp.2021.110593
- Structure preserving schemes for Fokker–Planck equations with nonconstant diffusion matrices, Mathematics and Computers in Simulation, Volume 188 (2021), p. 342 | DOI:10.1016/j.matcom.2021.04.018
- Burnett spectral method for the spatially homogeneous Boltzmann equation, Computers Fluids, Volume 200 (2020), p. 104456 | DOI:10.1016/j.compfluid.2020.104456
- Burnett Spectral Method for High-Speed Rarefied Gas Flows, SIAM Journal on Scientific Computing, Volume 42 (2020) no. 5, p. B1193 | DOI:10.1137/19m1294010
- Approximation of the Boltzmann collision operator based on hermite spectral method, Journal of Computational Physics, Volume 397 (2019), p. 108815 | DOI:10.1016/j.jcp.2019.07.014
- Reprint of: Residual equilibrium schemes for time dependent partial differential equations, Computers Fluids, Volume 169 (2018), p. 141 | DOI:10.1016/j.compfluid.2018.03.053
- Residual equilibrium schemes for time dependent partial differential equations, Computers Fluids, Volume 156 (2017), p. 329 | DOI:10.1016/j.compfluid.2017.07.013
- A Fast Spectral Method for the Boltzmann Collision Operator with General Collision Kernels, SIAM Journal on Scientific Computing, Volume 39 (2017) no. 4, p. B658 | DOI:10.1137/16m1096001
- Uncertainty Quantification for Kinetic Models in Socio–Economic and Life Sciences, Uncertainty Quantification for Hyperbolic and Kinetic Equations, Volume 14 (2017), p. 151 | DOI:10.1007/978-3-319-67110-9_5
- Numerical methods for plasma physics in collisional regimes, Journal of Plasma Physics, Volume 81 (2015) no. 1 | DOI:10.1017/s0022377814000762
Cité par 16 documents. Sources : Crossref